SUMMARY REPORT 98 FOXGLOVE STREET (FORMERLY 1013 FOXGLOVE STREET) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid-Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

JUNE 2021

SUMMARY REPORT 98 FOXGLOVE STREET (FORMERLY 1013 FOXGLOVE STREET) LAUREL BAY MILITARY HOUSING AREA MARINE CORPS AIR STATION BEAUFORT BEAUFORT, SC

> Revision: 0 Prepared for:

Department of the Navy Naval Facilities Engineering Command, Mid- Atlantic 9324 Virginia Avenue Norfolk, Virginia 23511-3095

and

Naval Facilities Engineering Command Atlantic

9324 Virginia Avenue Norfolk, Virginia 23511-3095

Prepared by:

CDM - AECOM Multimedia Joint Venture 10560 Arrowhead Drive, Suite 500 Fairfax, Virginia 22030

Contract Number: N62470-14-D-9016 CTO WE52 JUNE 2021

Table of Contents

1.0	INTRODUCTION	. 1
1.1 1.2	Background Information UST Removal and Assessment Process	
2.0	SAMPLING ACTIVITIES AND RESULTS	. 3
2.1 2.2	UST REMOVAL AND SOIL SAMPLING Soil Analytical Results	
3.0	PROPERTY STATUS	. 4
4.0	REFERENCES	. 4

Table

Table 1	Laboratory	Analytical	Results - Soil
	Laboratory	ranaryticar	Results Soll

Appendices

- Appendix A Multi-Media Selection Process for LBMH
- Appendix B UST Assesment Report
- Appendix C Regulatory Correspondence

List of Acronyms

bgs	below ground surface
BTEX	benzene, toluene, ethylbenzene, and xylenes
СТО	Contract Task Order
COPC	constituents of potential concern
IDIQ	Indefinite Delivery, Indefinite Quantity
IGWA	Initial Groundwater Assessment
JV	Joint Venture
LBMH	Laurel Bay Military Housing
MCAS	Marine Corps Air Station
NAVFAC Mid-Lant	Naval Facilities Engineering Command Mid-Atlantic
NFA	No Further Action
PAH	polynuclear aromatic hydrocarbon
QAPP	Quality Assurance Program Plan
RBSL	risk-based screening level
SCDHEC	South Carolina Department of Health and Environmental Control
Site	LBMH area at MCAS Beaufort, South Carolina
UST	underground storage tank
VISL	vapor intrusion screening level

1.0 INTRODUCTION

The CDM - AECOM Multimedia Joint Venture (JV) was contracted by the Naval Facilities Engineering Command, Mid-Atlantic (NAVFAC Mid-Lant) to provide reporting services for the heating oil underground storage tanks (USTs) located in Laurel Bay Military Housing (LBMH) area at the Marine Corps Air Station (MCAS) Beaufort, South Carolina (Site). This work has been awarded under Contract Task Order (CTO) WE52 of the Indefinite Delivery, Indefinite Quantity (IDIQ) Multimedia Environmental Compliance Contract (Contract No. N62470-14-D-9016).

As of January 2014, the LBMH addresses were re-numbered to comply with the E-911 emergency response addressing system; however, in order to remain consistent with historical sampling and reporting for LBMH area, the residences will continue to be referenced with their original address numbers in sample nomenclature and reporting documents.

This report summarizes the results the environmental investigation activities associated with the storage of home heating oil and the potential release of petroleum constituents at the referenced property. Based on the results of the investigation, a No Further Action (NFA) determination has been made by the South Carolina Department of Health and Environmental Control (SCDHEC) for 98 Foxglove Street (Formerly 1013 Foxglove Street). This NFA determination indicates that there are no unacceptable risks to human health or the environment for the petroleum constituents associated with the home heating oil USTs. The following information is included in this report:

- Background information;
- Sampling activities and results; and
- A determination of the property status.

1.1 Background Information

The LBMH area is located approximately 3.5 miles west of MCAS Beaufort. The area is approximately 970 acres in size and serves as an enlisted and officer family housing area. The area is configured with single family and duplex residential structures, and includes recreation, open space, and community facilities. The community includes approximately 1,300 housing units, including legacy Capehart style homes and newer duplex style homes. The housing area

is bordered on the west by salt marshes and the Broad River, and to the north, east and south by uplands. Forested areas lie along the northern and northeastern borders.

Capehart style homes within the LBMH area were formerly heated using heating oil stored in USTs at each residence. There were 1,100 Capehart style housing units in the LBMH area. The newer duplex homes within the LBMH area never utilized heating oil tanks. Heating oil has not been used at Laurel Bay since the mid-1980s. As was the accepted practice at the time, USTs were drained, filled with dirt, capped, and left in place when they were removed from service. Residential USTs are not regulated in the State of South Carolina (i.e., there are no federal or state laws governing installation, management, or removal).

In 2007, MCAS Beaufort began a voluntary program to remove the unregulated, residential USTs and conduct sampling activities to determine if, and to what extent, petroleum constituents may have impacted the surrounding environment. MCAS Beaufort coordinated with SCDHEC to develop removal procedures that were consistent with procedural requirements for regulated USTs. All tank removal activities and follow-on actions are conducted in coordination with SCDHEC. To date, all known USTs have been removed from all residential properties within the LBMH area.

1.2 UST Removal and Assessment Process

During the UST removal process, a soil sample was collected from beneath the UST excavations (approximately 4 to 6 feet [ft] below ground surface [bgs]) and analyzed for a predetermined list of constituents of potential concern (COPCs) associated with the petroleum compounds found in home heating oil. These COPCs, derived from the *Quality Assurance Program Plan (QAPP) for the Underground Storage Tank Management Division, Revision 3.1* (SCDHEC, 2016) and the *Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service,* (SCDHEC, 2018), are as follows:

- benzene, toluene, ethylbenzene, and xylenes (BTEX),
- naphthalene, and
- five select polynuclear aromatic hydrocarbon (PAHs): benzo(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene and dibenz(a,h)anthracene.

Soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form. In accordance with SCDHEC's *QAPP for the UST Management*

Summary Report 98 Foxglove Street (Formerly 1013 Foxglove Street) Laurel Bay Military Housing Area, Marine Corps Air Station Beaufort June 2021

Division (SCDHEC, 2016), the soil screening levels consists of SCDHEC risk-based screening levels (RBSLs). It should be noted that the RBSLs for select PAHs were revised in Revision 2.0 of the QAPP (SCDHEC, 2013) and were revised again in Revision 3.0 (SCDHEC, 2015). The screening levels used for evaluation at each site were those levels that were in effect at the time of reporting and review by SCDHEC.

The results of the soil sampling at each former UST location were used to determine if a potential for groundwater contamination exists (i.e., soil results greater than RBSLs) and subsequently to select properties for follow-up initial groundwater assessment (IGWA) sampling. The results of the IGWA sampling (if necessary) are used to determine the presence or absence of the aforementioned COPCs in groundwater and identify whether former UST locations will require additional delineation of COPCs in groundwater. In order to delineate the extent of impact to groundwater, permanent wells are installed and a sampling program is established for those former UST locations where IGWA sampling has indicated the presence of COPCs in excess of the SCDHEC RBSLs for groundwater. Groundwater analytical results are also compared to the site specific groundwater vapor intrusion screening levels (VISLs) to evaluate the potential for vapor intrusion and the necessity for an investigation associated with this media. A multi-media investigation selection process tree, applicable to the LBMH UST investigations, is presented as Appendix A.

2.0 SAMPLING ACTIVITIES AND RESULTS

The following section presents the sampling activities and associated results for 98 Foxglove Street (Formerly 1013 Foxglove Street). Details regarding the soil investigation at this site are provided in the *SCDHEC UST Assessment Report – 1013 Foxglove Street* (MCAS Beaufort, 2009). The UST Assessment Report is provided in Appendix B.

2.1 UST Removal and Soil Sampling

On May 13, 2009, a single 280 gallon heating oil UST was removed from the front yard adjacent to the house at 98 Foxglove Street (Formerly 1013 Foxglove Street). The former UST location is indicated on Figures 2 and 3 of the UST Assessment Report (Appendix B). The UST was removed and properly disposed of (i.e., shipped offsite for recycling or transported to a landfill). There was no visual evidence (i.e., staining or sheen) of petroleum impact at the time of the UST removal. According to the UST Assessment Report (Appendix B), the depth to the base of

the UST was 6'4" bgs and a single soil sample was collected from that depth. The sample was collected from the fill port side of the former UST to represent a worst case scenario.

Following UST removal, a soil sample was collected from the base of the excavation and shipped to an offsite laboratory for analysis of the petroleum COPCs. Sampling was performed in accordance with applicable South Carolina regulation R.61-92, Part 280 (SCDHEC, 2017) and assessment guidelines.

2.2 Soil Analytical Results

A summary of the laboratory analytical results and SCDHEC RBSLs is presented in Table 1. A copy of the laboratory analytical data report is included in the UST Assessment Report presented in Appendix B. The laboratory analytical data report includes the soil results for the additional PAHs that were analyzed, but do not have associated RBSLs.

The soil sample results were submitted by MCAS Beaufort to SCDHEC utilizing SCDHEC's UST Assessment Report form (Appendix B). The results of the soil sampling at the former UST location were used by MCAS Beaufort, in consultation with SCDHEC, to determine a path forward (i.e., additional sampling or NFA) for the property. The soil results collected from 98 Foxglove Street (Formerly 1013 Foxglove Street) were less than the SCDHEC RBSLs, which indicated the subsurface was not impacted by COPCs associated with the former UST at concentrations that presented a potential risk to human health and the environment.

3.0 PROPERTY STATUS

Based on the analytical results for soil, SCDHEC made the determination that NFA was required for 98 Foxglove Street (Formerly 1013 Foxglove Street). This NFA determination was obtained in a letter dated February 17, 2010. SCDHEC's NFA letter is provided in Appendix C.

4.0 REFERENCES

- Marine Corps Air Station Beaufort, 2009. South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank Assessment Report – 1013 Foxglove Street, Laurel Bay Military Housing Area, September 2009.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2013. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 2.0*, April 2013.

- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2015. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.0*, May 2015.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2016. *Quality Assurance Program Plan for the Underground Storage Tank Management* Division, *Revision 3.1*, February 2016.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2017. *R.61-92, Part 280, Underground Storage Tank Control Regulations*, March 2017.
- South Carolina Department of Health and Environmental Control Bureau of Land and Waste Management, 2018. Underground Storage Tank Assessment Instructions for Permanent Closure and Change-In-Service, March 2018.

Table

Table 1Laboratory Analytical Results - Soil98 Foxglove Street (Formerly 1013 Foxglove Street)Laurel Bay Military Housing AreaMarine Corps Air Station BeaufortBeaufort, South Carolina

Constituent	SCDHEC RBSLs ⁽¹⁾	Results Sample Collected 05/13/09	
Volatile Organic Compounds Analyzed	by EPA Method 8260B (mg/kg)		
Benzene	0.003	ND	
Ethylbenzene	1.15	ND	
Naphthalene	0.036	ND	
Toluene	0.627	ND	
Xylenes, Total	13.01	ND	
Semivolatile Organic Compounds Anal	yzed by EPA Method 8270D (mg/kg)		
Benzo(a)anthracene	0.66	ND	
Benzo(b)fluoranthene	0.66	ND	
Benzo(k)fluoranthene	0.66	ND	
Chrysene	0.66	ND	
Dibenz(a,h)anthracene	0.66	ND	

Notes:

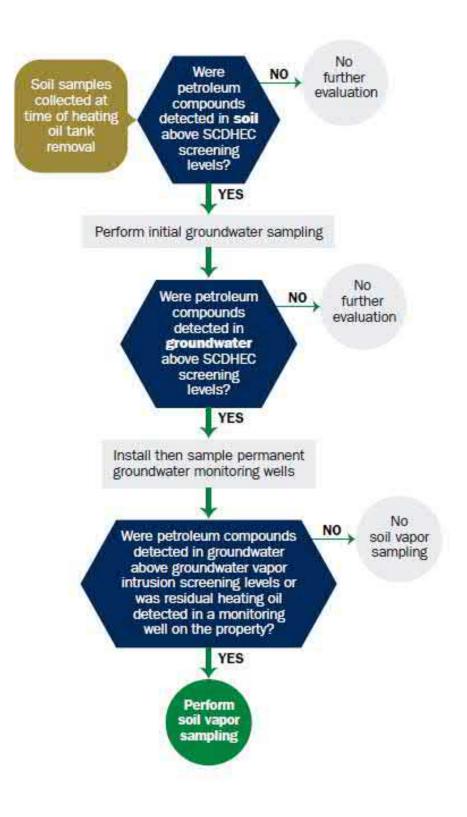
⁽¹⁾ South Carolina Risk-Based Screening Levels from the Quality Assurance Program Plan for the Underground Storage Tank Management Division, Revision 1.0 and 1.1 (SCDHEC, May 2001 and SCDHEC, February 2011) and the Underground Storage Tank Assessment Guidelines (SCDHEC, February 2006).

Bold font indicates the analyte was detected.

Bold font and shading indicates the concentration exceeds the SCDHEC RBSL.

EPA - United States Environmental Protection Agency

mg/kg - milligram per kilogram


ND - not detected at the reporting limit (or method detection limit if shown on the laboratory report). The laboratory report is provided in Appendix B.

RBSL - Risk-Based Screening Level

SCDHEC - South Carolina Department Of Health and Environmental Control

Appendix A Multi-Media Selection Process for LBMH

Appendix A - Multi-Media Selection Process for LBMH

Appendix B UST Assessment Report

Attachment 1

South Carolina Department of Health and Environmental Control (SCDHEC) Underground Storage Tank (UST) Assessment Report

Date Received	
	State Use Only

Submit Completed Form To: UST Program SCDHEC 2600 Bull Street Columbia, South Carolina 29201 Telephone (803) 896-7957

SEP 2 3 2009

	I. O'	WNERSHI	P OF UST (S)	SITE ASSESSMENT, REMEDIATION & REVITALIZATION	
MCAS Beaufort, Com					
Owner Name (Corporation, P.O. Box 55001	Individual, Public Ag	ency, Other)			
Mailing Address Beaufort,	South C	arolina	29904-500	1	
City 843	State 22	8-7317	Zip Code	Craig Ehde	Âc.
Area Code	Telephone	Number	С	Contact Person	

II. SITE IDENTIFICATION AND LOCATION

Permit I.D. # Laurel Bay Milita Facility Name or Compan	ary Housing Area, Marine Corps Air Station, Beaufort, SC
	., Laurel Bay Military Housing Area
Street Address or State Ro	ad (as applicable)
Beaufort,	Beaufort
City	County

Attachment 2

Insurance Statement

The petroleum release reported to DHEC on _______ at Permit ID Number ______ may qualify to receive state monies to pay for appropriate site rehabilitation activities. Before participation is allowed in the State Clean-up fund, written confirmation of the existence or non-existence of an environmental insurance policy is required. This section must be completed.

Is there now, or has there ever been an insurance policy or other financial mechanism that covers this UST release? **YES____ NO__** (check one)

If you answered **YES** to the above question, please complete the following information:

My policy provider is: ______ The policy deductible is: ______ The policy limit is:

If you have this type of insurance, please include a copy of the policy with this report.

IV. REQUEST FOR SUPERB FUNDING

I DO / DO NOT wish to participate in the SUPERB Program. (Circle one.)

V. CERTIFICATION (To be signed by the UST owner)

I certify that I have personally examined and am familiar with the information submitted in this and all attached documents; and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Name (Type or print.)

Signature

To be completed by Notary Public:

Sworn before me this ______ day of _____, 20____

(Name)

Notary Public for the state of ______. Please affix State seal if you are commissioned outside South Carolina

VI. UST INFORMATION

		1013Foxglove
A.	Product(ex. Gas, Kerosene)	Heating Oil
В.	Capacity(ex. 1k, 2k)	280 gal
C.	Age	Late 1950s
D.	Construction Material(ex. Steel, FRP)	Steel
E.	Month/Year of Last Use	Mid 1980s
F.	Depth (ft.) To Base of Tank	6'4"
G.	Spill Prevention Equipment Y/N	No
H.	Overfill Prevention Equipment Y/N	No
I.	Method of Closure Removed/Filled	Removed
J.	Date Tanks Removed/Filled	5/13/09
K.	Visible Corrosion or Pitting Y/N	Yes
L.	Visible Holes Y/N	Yes

M. Method of disposal for any USTs removed from the ground (attach disposal manifests) UST 1013Foxglove was removed from the ground, cleaned, and recycled. See Attachment "A."

N. Method of disposal for any liquid petroleum, sludges, or wastewaters removed from the USTs (attach disposal manifests) Contaminated water was pumped from the tank and disposed of by MCAS.

O. If any corrosion, pitting, or holes were observed, describe the location and extent for each UST Corrosion, pitting and holes were found on the entire surface.

VII. PIPING INFORMATION

		1013Foxglove
		Steel &
A.	Construction Material(ex. Steel, FRP)	Copper
B.	Distance from UST to Dispenser	N/A
C.	Number of Dispensers	N/A
D.	Type of System Pressure or Suction	Suction
E.	Was Piping Removed from the Ground? Y/N	Yes
F.	Visible Corrosion or Pitting Y/N	Yes
G.	Visible Holes Y/N	No
H.	Age	Late 1950s
I.	If any corrosion, pitting, or holes were observed, de	escribe the location and extent for each piping run.

Corrosion and pitting were found on the surface of the steel vent pipe. Copper supply & return piping was sound.

VIII. BRIEF SITE DESCRIPTION AND HISTORY

The USTs at the residences are constructed of single wall steel and formerly contained fuel oil for heating. These USTs were installed in the late 1950s and last used in the mid 1980s.

IX. SITE CONDITIONS

	Yes	No	Unk
 A. Were any petroleum-stained or contaminated soils found in the UST excavation, soil borings, trenches, or monitoring wells? If yes, indicate depth and location on the site map. 		х	
 B. Were any petroleum odors detected in the excavation, soil borings, trenches, or monitoring wells? If yes, indicate location on site map and describe the odor (strong, 		х	
mild, etc.) C. Was water present in the UST excavation, soil borings, or trenches? If yes, how far below land surface (indicate location and depth)?		х	
D. Did contaminated soils remain stockpiled on site after closure?		x	
If yes, indicate the stockpile location on the site map. Name of DHEC representative authorizing soil removal:			
E. Was a petroleum sheen or free product detected on any excavation or boring waters?If yes, indicate location and thickness.		x	

X. SAMPLE INFORMATION

A. SCDHEC Lab Certification Number 96012001

В.

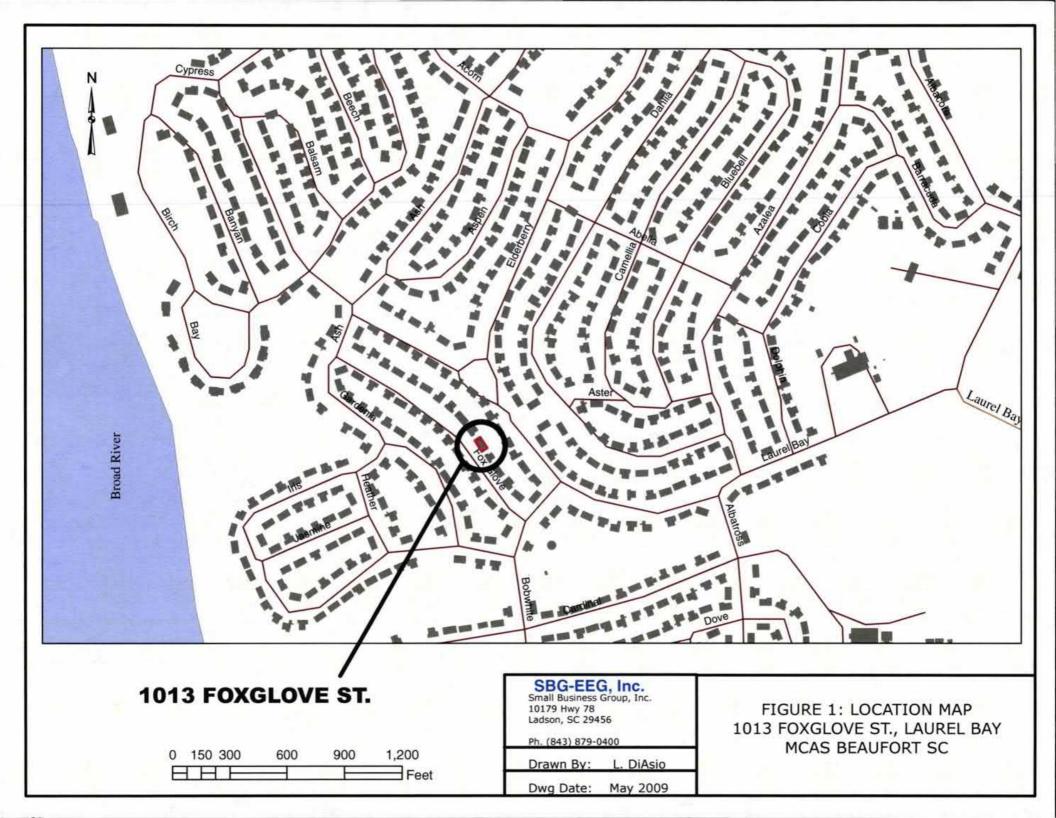
Sample #	Location	Sample Type (Soil/Water)	Soil Type (Sand/Clay)	Depth*	Date/Time of Collection	Collected by	OVA #
1013 Foxglove	Excav at fill end	Soil	Sandy	6'4"	5/13/09 1440 hrs	P. Shaw	
				<u>.</u>			
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							

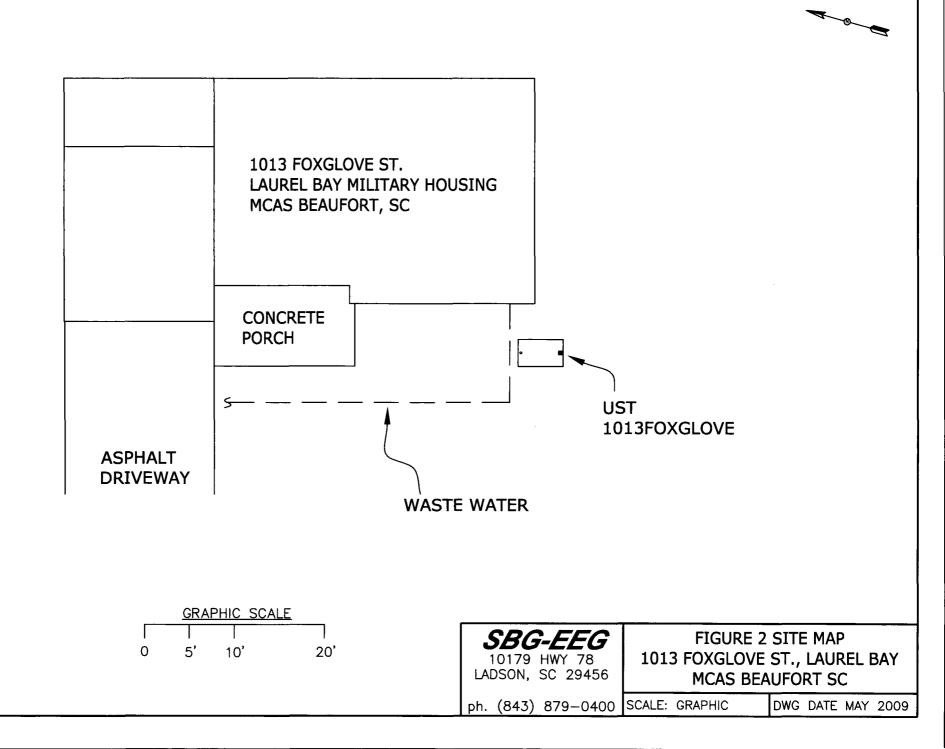
* = Depth Below the Surrounding Land Surface

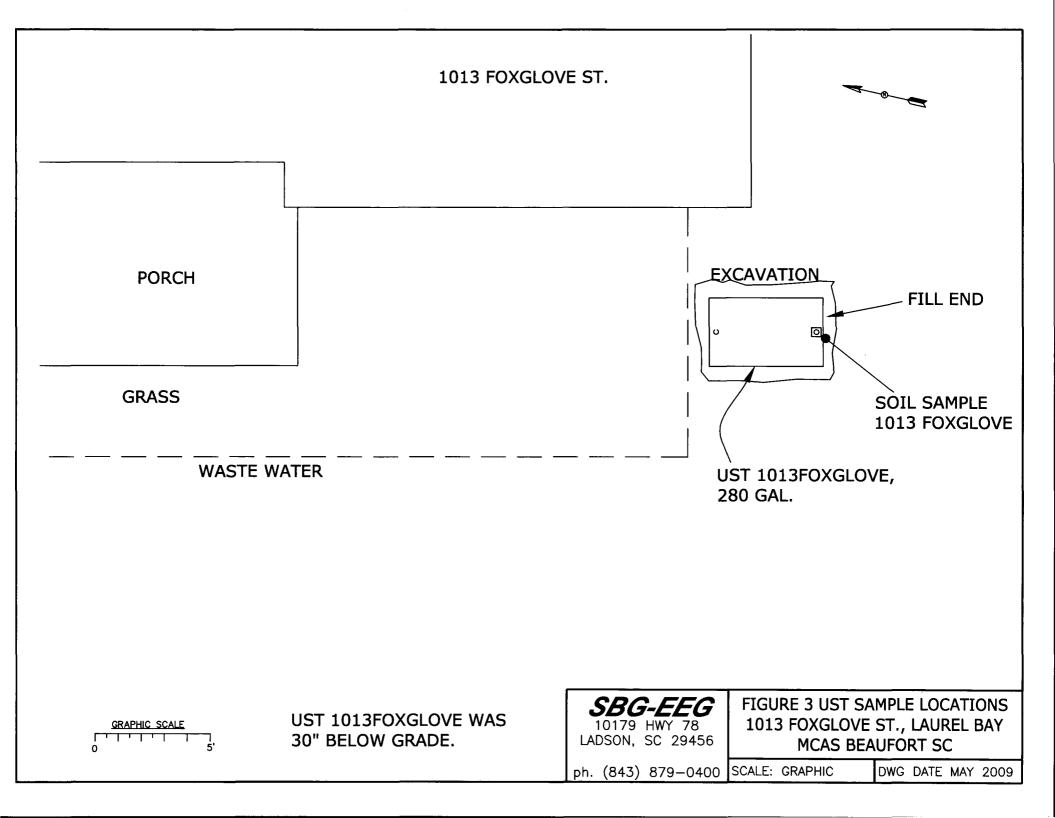
XI. SAMPLING METHODOLOGY

Provide a detailed description of the methods used to collect <u>and</u> store the samples. Also include the preservative used for each sample. Please use the space provided below.

Sampling was performed in accordance with SC DHEC R.61-92 Part 280 and SC DHEC Assessment Guidelines. Sample containers were prepared by the testing laboratory. The grab method was utilized to fill the sample containers leaving as little head space as possible and immediately capped. Soil samples were extracted from area below tank. The samples were marked, logged, and immediately placed in a sample cooler packed with ice to maintain an approximate temperature of 4 degrees Centigrade. Tools were thoroughly cleaned and decontaminated with the seven step decon process after each use. The samples remained in custody of SBG-EEG, Inc. until they were transferred to Test America Incorporated for analysis as documented in the Chain of Custody Record.


XII. RECEPTORS


		Yes	No
A.	Are there any lakes, ponds, streams, or wetlands located within 1000 feet of the UST system?		x
	If yes, indicate type of receptor, distance, and direction on site map.		
В.	Are there any public, private, or irrigation water supply wells within 1000 feet of the UST system?		х
	If yes, indicate type of well, distance, and direction on site map.		
C.	Are there any underground structures (e.g., basements) Located within 100 feet of the UST system?		х
	If yes, indicate type of structure, distance, and direction on site map.		
D.	Are there any underground utilities (e.g., telephone, electricity, gas, water, sewer, storm drain) located within 100 feet of the UST system that could potentially come in contact with the contamination? *Sewer and water.	Х*	
2	If yes, indicate the type of utility, distance, and direction on the site map.		
E.	Has contaminated soil been identified at a depth less than 3 feet below land surface in an area that is not capped by asphalt or concrete?		х
	If yes, indicate the area of contaminated soil on the site map.		


XIII. SITE MAP

You must supply a <u>scaled</u> site map. It should include all buildings, road names, utilities, tank and dispenser island locations, labeled sample locations, extent of excavation, and any other pertinent information.

(Attach Site Map Here)

Picture 1: Location of UST 1013Foxglove.

XIV. SUMMARY OF ANALYSIS RESULTS

Enter the soil analytical data for each soil boring for all COC in the table below and on the following page.

0		
CoC	1013 Foxglove	
Benzene	ND	
Toluene	ND	
Ethylbenzene	ND	
Xylenes	ND	
Naphthalene	ND	
Benzo (a) anthracene	ND	
Benzo (b) fluoranthene	ND	
Benzo (k) fluoranthene	ND	
Chrysene	ND	
Dibenz (a, h) anthracene	ND	
TPH (EPA 3550)		
CoC		
Benzene		
Toluene		
Ethylbenzene		
Xylenes		
Naphthalene		
Benzo (a) anthracene		
Benzo (b) fluoranthene		
Benzo (k) fluoranthene		
Chrysene		
Dibenz (a, h) anthracene		
ТРН (ЕРА 3550)		

SUMMARY OF ANALYSIS RESULTS (cont'd) Enter the ground water analytical data for each sample for all CoC in the table below. If free product is present, indicate the measured thickness to the nearest 0.01 feet.

CoC	RBSL (µg/l)	W-1	W-2	W -3	W -4
Free Product Thickness	None				
Benzene	5				
Toluene	1,000				
Ethylbenzene	700				
Xylenes	10,000				
Total BTEX	N/A				
МТВЕ	40				
Naphthalene	25				
Benzo (a) anthracene	10				
Benzo (b) flouranthene	10				
Benzo (k) flouranthene	10				
Chrysene	10				
Dibenz (a, h) anthracene	10				
EDB	.05				
1,2-DCA	5				
Lead	Site specific				

XV. ANALYTICAL RESULTS

You must submit the laboratory report and chain-of-custody form for the samples. These samples must be analyzed by a South Carolina certified laboratory.

(Attach Certified Analytical Results and Chain-of-Custody Here) (Please see Form #4)

THE LEADER IN ENVIRONMENTAL TESTING

May 29, 2009 1:10:39PM

Client: Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456 Attn: Tom McElwee Work Order:NSE1331Project Name:Laurel BaProject Nbr:[none]P/O Nbr:0829Date Received:05/15/09

NSE1331 Laurel Bay Housing Project [none] 0829 05/15/00

SAMPLE IDENTIFICATION	LAB NUMBER	COLLECTION DATE AND TIME
1005 Foxglove	NSE1331-01	05/11/09 13:20
1008 Foxglove	NSE1331-02	05/12/09 10:10
1009 Foxglove	NSE1331-03	05/12/09 13:40
1014 Foxglove	NSE1331-04	05/13/09 10:15
1013 Foxglove	NSE1331-05	05/13/09 14:40
1017 Foxglove	NSE1331-06	05/14/09 10:10

An executed copy of the chain of custody, the project quality control data, and the sample receipt form are also included as an addendum to this report. If you have any questions relating to this analytical report, please contact your Laboratory Project Manager at 1-800-765-0980. Any opinions, if expressed, are outside the scope of the Laboratory's accreditation.

This material is intended only for the use of the individual(s) or entity to whom it is addressed, and may contain information that is privileged and confidential. If you are not the intended recipient, or the employee or agent responsible for delivering this material to the intended recipient, you are hereby notified that any dissemination, distribution, or copying of this material is strictly prohibited. If you have received this material in error, please notify us immediately at 615-726-0177.

The Chain(s) of Custody, 2 pages, are included and are an integral part of this report.

These results relate only to the items tested. This report shall not be reproduced except in full and with permission of the laboratory.

All solids results are reported in wet weight unless specifically stated. Estimated uncertainty is available upon request. This report has been electronically signed. Report Approved By:

athy Gartner

Cathy Gartner

THE LEADER IN ENVIRONMENTAL TESTING

Client Small Business Group, Inc. (2449)

10179 Highway 78

Ladson, SC 29456

Attn Tom McElwee

Work Order:	NSE1331
Project Name:	Laurel Bay Housing Project
Project Number:	[none]
Received:	05/15/09 08:15

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NSE1331-01 (1005 Fox	glove - Soil) S		05/11/09 13:20					
General Chemistry Parameters		- in prout						
% Dry Solids	96.2		%	0.500	1	05/28/09 09:06	SW-846	9053977
Selected Volatile Organic Compounds I	by EPA Method	8260B						
Benzene	ND	02002	mg/kg dry	0.00225	1	05/22/09 23:31	SW846 8260B	9053563
Ethylbenzene	ND		mg/kg dry	0.00225	1	05/22/09 23:31	SW846 8260B	9053563
Naphthalene	ND		mg/kg dry	0.00564	1	05/22/09 23:31	SW846 8260B	9053563
Toluene	ND		mg/kg dry	0.00225	1	05/22/09 23:31	SW846 8260B	9053563
Xylenes, total	ND		mg/kg dry	0.00564	1	05/22/09 23:31	SW846 8260B	9053563
Surr: 1,2-Dichloroethane-d4 (41-150%)	94 %		ing/kg ury	0.00504	1	05/22/09 23:31	SW846 8260B	9053563
Surr: Dibromofluoromethane (55-139%)	100 %					05/22/09 23:31	SW846 8260B	9053563
Surr: Toluene-d8 (57-148%)	99 %					05/22/09 23:31	SW846 8260B	9053563
Surr: 4-Bromofluorobenzene (58-150%)	105 %					05/22/09 23:31	SW846 8260B	9053563
Polyaromatic Hydrocarbons by EPA 82	70D							
Acenaphthene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Acenaphthylene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Anthracene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Benzo (a) anthracene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Benzo (a) pyrene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Benzo (b) fluoranthene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Benzo (k) fluoranthene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Chrysene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Fluoranthene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Fluorene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Naphthalene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Phenanthrene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Pyrene	ND		mg/kg dry	0.0688		05/21/09 18:37	SW846 8270D	9052613
1-Methylnaphthalene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
2-Methylnaphthalene	ND		mg/kg dry	0.0688	1	05/21/09 18:37	SW846 8270D	9052613
Surr: Terphenyl-d14 (26-128%)	79 %		mg/ng ury	0.0000		05/21/09 18:37	SW846 8270D	9052613
Surr: 2-Fluorobiphenyl (19-109%)	65 %					05/21/09 18:37	SW846 8270D	9052613
Surr: Nitrobenzene-d5 (22-104%)	68 %					05/21/09 18:37	SW846 8270D	9052613

THE LEADER IN ENVIRONMENTAL TESTING

Client Small Business Group, Inc. (2449)

10179 Highway 78

Ladson, SC 29456

Attn Tom McElwee

Work Order:	NSE1331
Project Name:	Laurel Bay Housing Project
Project Number:	[none]
Received:	05/15/09 08:15

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NSE1331-02 (1008 Fox	glove - Soil) Sa	ampled:	05/12/09 10:10					
General Chemistry Parameters								
% Dry Solids	73.8		%	0.500	1	05/28/09 09:06	SW-846	9053977
Selected Volatile Organic Compounds	by EPA Method	8260B						
Benzene	ND		mg/kg dry	0.00266	1	05/23/09 00:02	SW846 8260B	9053563
Ethylbenzene	ND		mg/kg dry	0.00266	1	05/23/09 00:02	SW846 8260B	9053563
Naphthalene	ND		mg/kg dry	0.00666	1	05/23/09 00:02	SW846 8260B	9053563
Toluene	ND		mg/kg dry	0.00266	1	05/23/09 00:02	SW846 8260B	9053563
Xylenes, total	ND		mg/kg dry	0.00666	1	05/23/09 00:02	SW846 8260B	9053563
Surr: 1,2-Dichloroethane-d4 (41-150%)	91 %					05/23/09 00:02	SW846 8260B	9053563
Surr: Dibromofluoromethane (55-139%)	100 %					05/23/09 00:02	SW846 8260B	9053563
Surr: Toluene-d8 (57-148%)	96 %					05/23/09 00:02	SW846 8260B	9053563
Surr: 4-Bromofluorobenzene (58-150%)	117 %					05/23/09 00:02	SW846 8260B	9053563
Polyaromatic Hydrocarbons by EPA 82	270D							
Acenaphthene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Acenaphthylene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Anthracene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Benzo (a) anthracene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Benzo (a) pyrene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Benzo (b) fluoranthene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Benzo (k) fluoranthene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Chrysene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Fluoranthene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Fluorene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Naphthalene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Phenanthrene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Pyrene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
1-Methylnaphthalene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
2-Methylnaphthalene	ND		mg/kg dry	0.0887	1	05/21/09 19:00	SW846 8270D	9052613
Surr: Terphenyl-d14 (26-128%)	80 %					05/21/09 19:00	SW846 8270D	9052613
Surr: 2-Fluorobiphenyl (19-109%)	70 %					05/21/09 19:00	SW846 8270D	9052613
Surr: Nitrobenzene-d5 (22-104%)	77 %					05/21/09 19:00	SW846 8270D	9052613

THE LEADER IN ENVIRONMENTAL TESTING

Client Small Business Group, Inc. (2449)

10179 Highway 78

Ladson, SC 29456

Attn Tom McElwce

Work Order:	NSE1331
Project Name:	Laurel Bay Housing Project
Project Number:	[none]
Received:	05/15/09 08:15

Analyta	D V	***	T T * /	MDI	Dilution	Analysis Data/Time	Mothod	D-4-1
Analyte	Result	Flag	Units	MRL	Factor	Date/Time	Method	Batch
Sample ID: NSE1331-03 (1009 Fox	glove - Soil) S	ampled: (05/12/09 13:40					
General Chemistry Parameters								
% Dry Solids	87.5		%	0.500	1	05/28/09 09:06	SW-846	9053977
Selected Volatile Organic Compounds	by EPA Method	8260B						
Benzene	ND		mg/kg dry	0.00230	1	05/23/09 00:32	SW846 8260B	9053563
Ethylbenzene	ND		mg/kg dry	0.00230	1	05/23/09 00:32	SW846 8260B	9053563
Naphthalene	ND		mg/kg dry	0.00575	1	05/23/09 00:32	SW846 8260B	9053563
Toluene	ND		mg/kg dry	0.00230	1	05/23/09 00:32	SW846 8260B	9053563
Xylenes, total	ND		mg/kg dry	0.00575	1	05/23/09 00:32	SW846 8260B	9053563
Surr: 1,2-Dichloroethane-d4 (41-150%)	97 %		8 8 . ,			05/23/09 00:32	SW846 8260B	905356
Surr: Dibromofluoromethane (55-139%)	100 %					05/23/09 00:32	SW846 8260B	905356
Surr: Toluene-d8 (57-148%)	98 %					05/23/09 00:32	SW846 8260B	905356
Surr: 4-Bromofluorobenzene (58-150%)	119 %					05/23/09 00:32	SW846 8260B	905356
Polyaromatic Hydrocarbons by EPA 82	270D							
Acenaphthene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Acenaphthylene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Anthracene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Benzo (a) anthracene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Benzo (a) pyrene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Benzo (b) fluoranthene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Benzo (k) fluoranthene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Chrysene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Fluoranthene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Fluorene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Naphthalene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Phenanthrene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Pyrene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
1-Methylnaphthalene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
2-Methylnaphthalene	ND		mg/kg dry	0.0755	1	05/21/09 19:23	SW846 8270D	9052613
Surr: Terphenyl-d14 (26-128%)	80 %		5 6 7	-		05/21/09 19:23	SW846 8270D	905261
Surr: 2-Fluorobiphenyl (19-109%)	67 %					05/21/09 19:23	SW846 8270D	905261
Surr: Nitrobenzene-d5 (22-104%)	73 %					05/21/09 19:23	SW846 8270D	905261

THE LEADER IN ENVIRONMENTAL TESTING

Client Small Business Group, Inc. (2449)

10179 Highway 78

Ladson, SC 29456

Attn Tom McElwee

Work Order:	NSE1331
Project Name:	Laurel Bay Housing Project
Project Number:	[none]
Received:	05/15/09 08:15

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NSE1331-04 (1014 Fox	glove - Soil) Sa	ampled:	05/13/09 10:15					
General Chemistry Parameters		-						
% Dry Solids	95.2		%	0.500	1	05/28/09 09:06	SW-846	9053977
Selected Volatile Organic Compounds	by EPA Method	8260B						
Benzene	ND		mg/kg dry	0.00216	1	05/23/09 01:03	SW846 8260B	9053563
Ethylbenzene	ND		mg/kg dry	0.00216	1	05/23/09 01:03	SW846 8260B	9053563
Naphthalene	ND		mg/kg dry	0.00539	1	05/23/09 01:03	SW846 8260B	9053563
Toluene	ND		mg/kg dry	0.00216	1	05/23/09 01:03	SW846 8260B	9053563
Xylenes, total	ND		mg/kg dry	0.00539	1	05/23/09 01:03	SW846 8260B	9053563
Surr: 1,2-Dichloroethane-d4 (41-150%)	96 %					05/23/09 01:03	SW846 8260B	9053563
Surr: Dibromofluoromethane (55-139%)	101 %					05/23/09 01:03	SW846 8260B	9053563
Surr: Toluene-d8 (57-148%)	97 %					05/23/09 01:03	SW846 8260B	9053563
Surr: 4-Bromofluorobenzene (58-150%)	101 %					05/23/09 01:03	SW846 8260B	9053563
Polyaromatic Hydrocarbons by EPA 82	270D							
Acenaphthene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Acenaphthylene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Anthracene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Benzo (a) anthracene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Benzo (a) pyrene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Benzo (b) fluoranthene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Benzo (k) fluoranthene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Chrysene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Fluoranthene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Fluorene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Naphthalene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Phenanthrene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Pyrene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
1-Methylnaphthalene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
2-Methylnaphthalene	ND		mg/kg dry	0.0703	1	05/21/09 19:46	SW846 8270D	9052613
Surr: Terphenyl-d14 (26-128%)	83 %					05/21/09 19:46	SW846 8270D	9052613
Surr: 2-Fluorobiphenyl (19-109%)	72 %					05/21/09 19:46	SW846 8270D	9052613
Surr: Nitrobenzene-d5 (22-104%)	78 %					05/21/09 19:46	SW846 8270D	9052613

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Small Business Group, Inc. (2449) 10179 Highway 78

Ladson, SC 29456

Attn Tom McElwee

Work Order:	NSE1331
Project Name:	Laurel Bay Housing Project
Project Number:	[none]
Received:	05/15/09 08:15

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NSE1331-05 (1013 Fox	alove - Soil) S		05/12/00 14.40					
General Chemistry Parameters	giuve - Sully S	ampieu:	03/13/09 14:40					
	05.5		0/	0.500		05/00/00 00 06	OW 046	0052075
% Dry Solids	95.5		%	0.500	1	05/28/09 09:06	SW-846	9053977
Selected Volatile Organic Compounds	by EPA Method	8260B						
Benzene	ND		mg/kg dry	0.00198	1	05/23/09 01:34	SW846 8260B	9053563
Ethylbenzene	ND		mg/kg dry	0.00198	1	05/23/09 01:34	SW846 8260B	9053563
Naphthalene	ND		mg/kg dry	0.00496	1	05/23/09 01:34	SW846 8260B	9053563
Toluene	ND		mg/kg dry	0.00198	1	05/23/09 01:34	SW846 8260B	9053563
Xylenes, total	ND		mg/kg dry	0.00496	1	05/23/09 01:34	SW846 8260B	9053563
Surr: 1,2-Dichloroethane-d4 (41-150%)	93 %					05/23/09 01:34	SW846 8260B	905356.
Surr: Dibromofluoromethane (55-139%)	99 %					05/23/09 01:34	SW846 8260B	905356.
Surr: Toluene-d8 (57-148%)	98 %					05/23/09 01:34	SW846 8260B	905356.
Surr: 4-Bromofluorobenzene (58-150%)	99 %					05/23/09 01:34	SW846 8260B	905356.
Polyaromatic Hydrocarbons by EPA 82	270D							
Acenaphthene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Acenaphthylene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Anthracene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Benzo (a) anthracene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Benzo (a) pyrene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Benzo (b) fluoranthene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Benzo (k) fluoranthene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Chrysene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Fluoranthene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Fluorenc	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Naphthalene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Phenanthrene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Pyrene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
1-Methylnaphthalene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
2-Methylnaphthalene	ND		mg/kg dry	0.0694	1	05/21/09 20:09	SW846 8270D	9052613
Surr: Terphenyl-d14 (26-128%)	72 %					05/21/09 20:09	SW846 8270D	905261.
Surr: 2-Fluorobiphenyl (19-109%)	61 %					05/21/09 20:09	SW846 8270D	905261
Surr: Nitrobenzene-d5 (22-104%)	64 %					05/21/09 20:09	SW846 8270D	9052613

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

Client Small Business Group, Inc. (2449) 10179 Highway 78

Ladson, SC 29456

Attn Tom McElwee

Work Order:NSE1331Project Name:Laurel Bay Housing ProjectProject Number:[none]Received:05/15/09 08:15

ANALYTICAL REPORT

Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NSE1331-06 (1017 Fox	glove - Soil) S	ampled:	05/14/09 10:10					
General Chemistry Parameters								
% Dry Solids	85.9		%	0.500	1	05/28/09 09:06	SW-846	9053977
Selected Volatile Organic Compounds	by EPA Method	8260B						
Benzene	ND		mg/kg dry	0.00269	1	05/23/09 02:04	SW846 8260B	9053563
Ethylbenzene	ND		mg/kg dry	0.00269	1	05/23/09 02:04	SW846 8260B	9053563
Naphthalene	ND		mg/kg dry	0.00672	1	05/23/09 02:04	SW846 8260B	9053563
Toluene	ND		mg/kg dry	0.00269	1	05/23/09 02:04	SW846 8260B	9053563
Xylenes, total	ND		mg/kg dry	0.00672	1	05/23/09 02:04	SW846 8260B	9053563
Surr: 1,2-Dichloroethane-d4 (41-150%)	93 %					05/23/09 02:04	SW846 8260B	9053563
Surr: Dibromofluoromethane (55-139%)	100 %					05/23/09 02:04	SW846 8260B	9053563
Surr: Toluene-d8 (57-148%)	98 %					05/23/09 02:04	SW846 8260B	9053563
Surr: 4-Bromofluorobenzene (58-150%)	99 %					05/23/09 02:04	SW846 8260B	9053563
Polyaromatic Hydrocarbons by EPA 82	270D							
Acenaphthene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Acenaphthylene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Anthracene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Benzo (a) anthracene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Benzo (a) pyrene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Benzo (b) fluoranthene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Benzo (g,h,i) perylene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Benzo (k) fluoranthene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Chrysene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Dibenz (a,h) anthracene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Fluoranthene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Fluorene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Indeno (1,2,3-cd) pyrene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Naphthalene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Phenanthrene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Pyrene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
1-Methylnaphthalene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
2-Methylnaphthalene	ND		mg/kg dry	0.0769	1	05/21/09 20:31	SW846 8270D	9052613
Surr: Terphenyl-d14 (26-128%)	77 %		······································		•	05/21/09 20:31	SW846 8270D	9052613
Surr: 2-Fluorobiphenyl (19-109%)	69 %					05/21/09 20:31	SW846 8270D	9052613
Surr: Nitrobenzene-d5 (22-104%)	76 %					05/21/09 20:31	SW846 8270D	9052613

THE LEADER IN ENVIRONMENTAL TESTING

 Client
 Small Business Group, Inc. (2449)
 Work Order:
 NSE1331

 10179 Highway 78
 Project Name:
 Laurel Bay Housing Project

 Ladson, SC 29456
 Project Number:
 [none]

 Attm
 Tom McElwee
 Received:
 05/15/09 08:15

SAMPLE EXTRACTION DATA

Parameter	Batch	Lab Number	Wt/Vol Extracted	Extracted Vol	Date	Analyst	Extraction Method
Polyaromatic Hydrocarbons by	v EPA 8270D						
SW846 8270D	9052613	NSE1331-01	30.37	1.00	05/21/09 11:10	TEM	EPA 3550B
SW846 8270D	9052613	NSE1331-02	30.71	1.00	05/21/09 11:10	TEM	EPA 3550B
SW846 8270D	9052613	NSE1331-03	30.42	1.00	05/21/09 11:10	TEM	EPA 3550B
SW846 8270D	9052613	NSE1331-04	30.03	1.00	05/21/09 11:10	TEM	EPA 3550B
SW846 8270D	9052613	NSE1331-05	30.33	1.00	05/21/09 11:10	TEM	EPA 3550B
SW846 8270D	9052613	NSE1331-06	30.41	1.00	05/21/09 11:10	TEM	EPA 3550B
Selected Volatile Organic Com	pounds by EPA Method	8260B					
SW846 8260B	9053563	NSE1331-01	4.61	5.00	05/11/09 13:20	JRL	EPA 5035
SW846 8260B	9053563	NSE1331-02	5.09	5.00	05/12/09 10:10	JRL	EPA 5035
SW846 8260B	9053563	NSE1331-03	4.97	5.00	05/12/09 13:40	JRL	EPA 5035
SW846 8260B	9053563	NSE1331-04	4.87	5.00	05/13/09 10:15	JRL	EPA 5035
SW846 8260B	9053563	NSE1331-05	5.28	5.00	05/13/09 14:40	JRL	EPA 5035
SW846 8260B	9053563	NSE1331-06	4.33	5.00	05/14/09 10:10	JRL	EPA 5035

THE LEADER IN ENVIRONMENTAL TESTING

Client Small Business Group, Inc. (2449) 10179 Highway 78

Ladson, SC 29456

Attn Tom McElwee

Work Order:NSE1331Project Name:Laurel Bay Housing ProjectProject Number:[nonc]Received:05/15/09 08:15

PROJECT QUALITY CONTROL DATA Blank

Analyte	Blank Value	Q	Units	Q.C. Batch	Lab Number	Analyzed Date/Time
Selected Volatile Organic Compo	ounds by EPA Method	l 8260B				
9053563-BLK1						
Benzene	< 0.000670		mg/kg wet	9053563	9053563-BLK1	05/22/09 20:26
Ethylbenzene	<0.000670		mg/kg wet	9053563	9053563-BLK1	05/22/09 20:26
Naphthalene	< 0.00151		mg/kg wet	9053563	9053563-BLK1	05/22/09 20:26
Toluene	<0.000670		mg/kg wet	9053563	9053563-BLK1	05/22/09 20:26
Xylenes, total	< 0.00172		mg/kg wet	9053563	9053563-BLK1	05/22/09 20:26
Surrogate: 1,2-Dichloroethane-d4	95%			9053563	9053563-BLK1	05/22/09 20:26
Surrogate: Dibromofluoromethane	101%			9053563	9053563-BLK1	05/22/09 20:26
Surrogate: Toluene-d8	98%			9053563	9053563-BLK1	05/22/09 20:26
Surrogate: 4-Bromofluorobenzene	129%			9053563	9053563-BLK1	05/22/09 20:26
Polyaromatic Hydrocarbons by l	FPA 8270D					
9052613-BLK1						
Acenaphthene	< 0.0310		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Acenaphthylene	< 0.0320		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Anthracene	< 0.0330		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Benzo (a) anthracene	< 0.0380		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Benzo (a) pyrene	<0.0290		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Benzo (b) fluoranthene	< 0.0320		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Benzo (g,h,i) perylene	< 0.0290		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Benzo (k) fluoranthene	<0.0290		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Chrysene	< 0.0390		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Dibenz (a,h) anthracene	< 0.0310		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Fluoranthene	< 0.0340		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Fluorene	< 0.0390		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Indeno (1,2,3-cd) pyrene	< 0.0310		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Naphthalene	< 0.0410		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Phenanthrene	< 0.0340		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Pyrene	< 0.0410		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
l-Methylnaphthalene	< 0.0320		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
2-Methylnaphthalene	< 0.0330		mg/kg wet	9052613	9052613-BLK1	05/21/09 17:06
Surrogate: Terphenyl-d14	85%			9052613	9052613-BLK1	05/21/09 17:06
Surrogate: 2-Fluorobiphenyl	65%			9052613	9052613-BLK1	05/21/09 17:06
Surrogate: Nitrobenzene-d5	69%			9052613	9052613-BLK1	05/21/09 17:06

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

Client Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456

Attn Tom McElwee

Work Order:NSE1331Project Name:Laurel Bay Housing ProjectProject Number:[none]Received:05/15/09 08:15

PROJECT QUALITY CONTROL DATA Duplicate										
Analyte	Orig. Val.	Duplicate	Q	Units	RPD	Limit	Batch	Sample Duplicated	% Rec.	Analyzed Date/Time
General Chemistry Parameters 9053977-DUP1										
% Dry Solids	80.5	81.2		%	0.9	20	9053977	NSE1323-18		05/28/09 09:06

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

 Client
 Small Business Group, Inc. (2449)
 Work Order:
 NSE1331

 10179 Highway 78
 Project Name:
 Laurel Bay Housing Project

 Ladson, SC 29456
 Project Number:
 [nonc]

 Attn
 Tom McElwee
 05/15/09 08:15

	PROJECT QUALITY CONTROL DATA LCS										
Analyte	Known Val.	Analyzed Val	Q	Units	% Rec.	Target Range	Batch	Analyzed Date/Time			
Selected Volatile Organic Compound	nds by EPA Method 82	60B									
9053563-BS1											
Benzene	50.0	53.2		ug/kg	106%	76 - 130	9053563	05/22/09 18:23			
Ethylbenzene	50.0	56.9		ug/kg	114%	80 - 128	9053563	05/22/09 18:23			
Naphthalene	50.0	55.5		ug/kg	111%	63 - 144	9053563	05/22/09 18:23			
Toluene	50.0	53.4		ug/kg	107%	80 - 125	9053563	05/22/09 18:23			
Xylenes, total	150	167		ug/kg	112%	79 - 130	9053563	05/22/09 18:23			
Surrogate: 1,2-Dichloroethane-d4	50.0	47.8			96%	41 - 150	9053563	05/22/09 18:23			
Surrogate: Dibromofluoromethane	50.0	51.0			102%	55 - 139	9053563	05/22/09 18:23			
Surrogate: Toluene-d8	50.0	49.8			100%	57 - 148	9053563	05/22/09 18:23			
Surrogate: 4-Bromofluorobenzene	50.0	58.4			117%	58 - 150	9053563	05/22/09 18:23			
Polyaromatic Hydrocarbons by EP	PA 8270D										
9052613-BS1											
Acenaphthene	1.67	1.26		mg/kg wet	76%	52 - 106	9052613	05/21/09 17:28			
Acenaphthylene	1.67	1.54		mg/kg wet	92%	53 - 109	9052613	05/21/09 17:28			
Anthracene	1.67	1.52		mg/kg wet	91%	54 - 124	9052613	05/21/09 17:28			
Benzo (a) anthracene	1.67	1.46		mg/kg wet	87%	53 - 111	9052613	05/21/09 17:28			
Benzo (a) pyrene	1.67	1.51		mg/kg wet	90%	52 - 122	9052613	05/21/09 17:28			
Benzo (b) fluoranthene	1.67	1.61		mg/kg wet	97%	48 - 115	9052613	05/21/09 17:28			
Benzo (g,h,i) perylene	1.67	1.58		mg/kg wet	95%	46 - 114	9052613	05/21/09 17:28			
Benzo (k) fluoranthene	1.67	1.31		mg/kg wet	79%	41 - 121	9052613	05/21/09 17:28			
Chrysene	1.67	1.42		mg/kg wet	85%	49 - 113	9052613	05/21/09 17:28			
Dibenz (a,h) anthracene	1.67	1.54		mg/kg wet	93%	47 - 117	9052613	05/21/09 17:28			
Fluoranthene	1.67	1.47		mg/kg wet	88%	52 - 113	9052613	05/21/09 17:28			
Fluorene	1.67	1.47		mg/kg wet	88%	54 - 107	9052613	05/21/09 17:28			
Indeno (1,2,3-cd) pyrene	1.67	1.56		mg/kg wet	93%	47 - 115	9052613	05/21/09 17:28			
Naphthalene	1.67	1.49		mg/kg wet	89%	34 - 107	9052613	05/21/09 17:28			
Phenanthrene	1.67	1.32		mg/kg wet	79%	53 - 108	9052613	05/21/09 17:28			
Pyrene	1.67	1.33		mg/kg wet	80%	54 - 113	9052613	05/21/09 17:28			
1-Methylnaphthalene	1.67	1.30		mg/kg wet	78%	36 - 100	9052613	05/21/09 17:28			
2-Methylnaphthalene	1.67	1.42		mg/kg wet	85%	42 - 112	9052613	05/21/09 17:28			
Surrogate: Terphenyl-d14	1.67	1.45			87%	26 - 128	9052613	05/21/09 17:28			
Surrogate: 2-Fluorobiphenyl	1.67	1.42			85%	19 - 109	9052613	05/21/09 17:28			
Surrogate: Nitrobenzene-d5	1.67	1.50			90%	22 - 104	9052613	05/21/09 17:28			

THE LEADER IN ENVIRONMENTAL TESTING

Client Small Business Group, Inc. (2449) 10179 Highway 78 Ladson, SC 29456

Attn Tom McElwee

Work Order:	NSE1331
Project Name:	Laurel Bay Housing Project
Project Number:	[none]
Received:	05/15/09 08:15

PROJECT QUALITY CONTROL DATA

LCS Dup

						-				- ·	
Orig. Val.	Duplicate	Q	Units	•	% Rec.	Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
nds by EPA I	Method 826	50 B									
	51.1		ug/kg	50.0	102%	76 - 130	4	43	9053563		05/22/09 18:54
	55.2		ug/kg	50.0	110%	80 - 128	3	48	9053563		05/22/09 18:54
	56.0		ug/kg	50.0	112%	63 - 144	0.8	50	9053563		05/22/09 18:54
	51.2		ug/kg	50.0	102%	80 - 125	4	44	9053563		05/22/09 18:54
	162		ug/kg	150	108%	79 - 130	4	48	9053563		05/22/09 18:54
	47.0		ug/kg	50.0	94%	41 - 150			9053563		05/22/09 18:54
	50.6		ug/kg	50.0	101%	55 - 139			9053563		05/22/09 18:54
	49.0		ug/kg	50.0	98%	57 - 148			9053563		05/22/09 18:54
	60.2		ug/kg	50.0	120%	58 - 150			9053563		05/22/09 18:54
		nds by EPA Method 820 51.1 55.2 56.0 51.2 162 47.0 50.6 49.0	nds by EPA Method 8260B 51.1 55.2 56.0 51.2 162 47.0 50.6 49.0	51.1 ug/kg 55.2 ug/kg 56.0 ug/kg 51.2 ug/kg 162 ug/kg 47.0 ug/kg 50.6 ug/kg 47.0 ug/kg 50.6 ug/kg 49.0 ug/kg	nds by EPA Method 8260B 51.1 ug/kg 50.0 55.2 ug/kg 50.0 56.0 ug/kg 50.0 51.2 ug/kg 50.0 162 ug/kg 150 47.0 ug/kg 50.0 50.6 ug/kg 50.0 49.0 ug/kg 50.0	Orig. Val. Duplicate Q Units Conc % Rec. ads by EPA Method 8260B 51.1 ug/kg 50.0 102% 55.2 ug/kg 50.0 110% 56.0 ug/kg 50.0 112% 51.2 ug/kg 50.0 102% 162 ug/kg 150 108% 47.0 ug/kg 50.0 94% 50.6 ug/kg 50.0 101% 49.0 ug/kg 50.0 98%	Orig. Val. Duplicate Q Units Conc % Rec. Range nds by EPA Method 8260B 51.1 ug/kg 50.0 102% 76 - 130 55.2 ug/kg 50.0 110% 80 - 128 56.0 ug/kg 50.0 112% 63 - 144 51.2 ug/kg 50.0 102% 79 - 130 162 ug/kg 100 94% 41 - 150 50.6 ug/kg 50.0 101% 55 - 139 49.0 ug/kg 50.0 98% 57 - 148	Orig. Val. Duplicate Q Units Conc % Rec. Range RPD nds by EPA Method 8260B 51.1 ug/kg 50.0 102% 76 - 130 4 55.2 ug/kg 50.0 110% 80 - 128 3 56.0 ug/kg 50.0 112% 63 - 144 0.8 51.2 ug/kg 50.0 102% 80 - 125 4 162 ug/kg 100 108% 79 - 130 4 47.0 ug/kg 50.0 94% 41 - 150 50.6 ug/kg 50.0 101% 55 - 139 49.0 ug/kg 50.0 98% 57 - 148	Orig. Val. Duplicate Q Units Conc % Rec. Range RPD Limit nds by EPA Method 8260B 51.1 ug/kg 50.0 102% 76 - 130 4 43 55.2 ug/kg 50.0 110% 80 - 128 3 48 56.0 ug/kg 50.0 112% 63 - 144 0.8 50 51.2 ug/kg 50.0 102% 79 - 130 4 48 162 ug/kg 150 108% 79 - 130 4 48 47.0 ug/kg 50.0 101% 55 - 139 48 49.0 ug/kg 50.0 98% 57 - 148 55	Orig. Val. Duplicate Q Units Conc % Rec. Range RPD Limit Batch nds by EPA Method 8260B 51.1 ug/kg 50.0 102% 76 - 130 4 43 9053563 55.2 ug/kg 50.0 110% 80 - 128 3 48 9053563 56.0 ug/kg 50.0 112% 63 - 144 0.8 50 9053563 51.2 ug/kg 50.0 102% 79 - 130 4 48 9053563 162 ug/kg 150 108% 79 - 130 4 48 9053563 47.0 ug/kg 50.0 94% 41 - 150 9053563 50.6 ug/kg 50.0 101% 55 - 139 9053563 49.0 ug/kg 50.0 98% 57 - 148 9053563	Orig. Val. Duplicate Q Units Conc % Rec. Range RPD Limit Batch Duplicated nds by EPA Method 8260B 51.1 ug/kg 50.0 102% 76 - 130 4 43 9053563 55.2 ug/kg 50.0 110% 80 - 128 3 48 9053563 56.0 ug/kg 50.0 112% 63 - 144 0.8 50 9053563 51.2 ug/kg 50.0 102% 79 - 130 4 48 9053563 162 ug/kg 100 108% 79 - 130 4 48 9053563 47.0 ug/kg 50.0 94% 41 - 150 9053563 50.6 ug/kg 50.0 101% 55 - 139 9053563 49.0 ug/kg 50.0 98% 57 - 148 9053563

TestAmerica

THE LEADER IN ENVIRONMENTAL TESTING

2960 Foster Creighton Road Nashville, TN 37204 * 800-765-0980 * Fax 615-726-3404

 Client
 Small Business Group, Inc. (2449)
 Work Order:
 NSE1331

 10179 Highway 78
 Project Name:
 Laurel Bay Housing Project

 Ladson, SC 29456
 Project Number:
 [none]

 Attm
 Tom McElwee
 05/15/09 08:15

PROJECT QUALITY CONTROL DATA Matrix Spike										
Analyte	Orig. Val.	MS Val	Q Units	Spike Conc	% Rec.	Target Range	Batch	Sample Spiked	Analyzed Date/Time	
Selected Volatile Organic Compo	unds by EPA Me	thod 8260B								
9053563-MS1										
Benzene	ND	36.6	ug/kg	50.0	73%	33 - 146	9053563	NSE1337-03	05/23/09 04:07	
Ethylbenzene	ND	37.7	ug/kg	50.0	75%	16 - 160	9053563	NSE1337-03	05/23/09 04:07	
Naphthalene	ND	25.5	ug/kg	50.0	51%	10 - 151	9053563	NSE1337-03	05/23/09 04:07	
Toluene	ND	35.1	ug/kg	50.0	70%	30 - 145	9053563	NSE1337-03	05/23/09 04:07	
Xylenes, total	ND	109	ug/kg	150	73%	16 - 159	9053563	NSE1337-03	05/23/09 04:07	
Surrogate: 1,2-Dichloroethane-d4		48.4	ug/kg	50.0	97%	41 - 150	9053563	NSE1337-03	05/23/09 04:07	
Surrogate: Dibromofluoromethane		50.9	ug/kg	50.0	102%	55 - 139	9053563	NSE1337-03	05/23/09 04:07	
Surrogate: Toluene-d8		48.8	ug/kg	50.0	98%	57 - 148	9053563	NSE1337-03	05/23/09 04:07	
Surrogate: 4-Bromofluorobenzene		49.4	ug/kg	50.0	99%	58 - 150	9053563	NSE1337-03	05/23/09 04:07	
Polyaromatic Hydrocarbons by E	PA 8270D									
9052613-MS1										
Acenaphthene	ND	1.28	mg/kg dry	1.71	75%	28 - 117	9052613	NSE1331-01	05/21/09 17:51	
Acenaphthylene	ND	1.56	mg/kg dry	1.71	91%	33 - 113	9052613	NSE1331-01	05/21/09 17:51	
Anthracene	ND	1.50	mg/kg dry	1.71	88%	31 - 131	9052613	NSE1331-01	05/21/09 17:51	
Benzo (a) anthracene	ND	1.47	mg/kg dry	1.71	86%	29 - 124	9052613	NSE1331-01	05/21/09 17:51	
Benzo (a) pyrene	ND	1.48	mg/kg dry	1.71	86%	30 - 127	9052613	NSE1331-01	05/21/09 17:5	
Benzo (b) fluoranthene	ND	1.70	mg/kg dry	1.71	99%	26 - 128	9052613	NSE1331-01	05/21/09 17:5	
Benzo (g,h,i) perylene	ND	1.59	mg/kg dry	1.71	93%	21 - 122	9052613	NSE1331-01	05/21/09 17:5	
Benzo (k) fluoranthene	ND	1.37	mg/kg dry	1.71	80%	20 - 130	9052613	NSE1331-01	05/21/09 17:5	
Chrysene	ND	1.44	mg/kg dry	1.71	84%	30 - 119	9052613	NSE1331-01	05/21/09 17:5	
Dibenz (a,h) anthracene	ND	1.57	mg/kg dry	1.71	92%	27 - 122	9052613	NSE1331-01	05/21/09 17:5	
Fluoranthene	ND	1.50	mg/kg dry	1.71	88%	23 - 132	9052613	NSE1331-01	05/21/09 17:5	
Fluorene	ND	1.53	mg/kg dry	1.71	89%	38 - 110	9052613	NSE1331-01	05/21/09 17:5	
Indeno (1,2,3-cd) pyrene	ND	1.57	mg/kg dry	1.71	92%	24 - 122	9052613	NSE1331-01	05/21/09 17:5	
Naphthalene	ND	1.46	mg/kg dry	1.71	85%	14 - 117	9052613	NSE1331-01	05/21/09 17:5	
Phenanthrene	0.0435	1.36	mg/kg dry	1.71	77%	21 - 130	9052613	NSE1331-01	05/21/09 17:5	
Pyrene	ND	1.42	mg/kg dry	1.71	83%	24 - 133	9052613	NSE1331-01	05/21/09 17:5	
1-Methylnaphthalene	ND	1.38	mg/kg dry	1.71	81%	10 - 121	9052613	NSE1331-01	05/21/09 17:5	
2-Methylnaphthalene	ND	1.51	mg/kg dry	1.71	88%	26 - 116	9052613	NSE1331-01	05/21/09 17:5	
Surrogate: Terphenyl-d14		1.51	mg/kg dry	1.71	88%	26 - 128	9052613	NSE1331-01	05/21/09 17:5	
Surrogate: 2-Fluorobiphenyl		1.36	mg/kg dry	1.71	79%	19 - 109	9052613	NSE1331-01	05/21/09 17:5	
Surrogate: Nitrobenzene-d5		1.45	mg/kg dry	1.71	85%	22 - 104	9052613	NSE1331-01	05/21/09 17:5	

THE LEADER IN ENVIRONMENTAL TESTING

Client Small Business Group, Inc. (2449)

10179 Highway 78

Ladson, SC 29456

Attn Tom McElwee

Work Order:	NSE1331
Project Name:	Laurel Bay Housing Project
Project Number:	[none]
Received:	05/15/09 08:15

PROJECT QUALITY CONTROL DATA Matrix Spike Dup

Np 28.1 ug/kg 500 56% 10 - 151 10 50 9033563 NE1337-03 05/23/09 0438 Tolene ND 39.2 ug/kg 100 11 44 9053563 NE1337-03 05/23/09 0438 Xylenes, total ND 120 ug/kg 100 80% 16 - 159 9 48 9053563 NE1337-03 05/23/09 0438 Surrogare: 1.21-Dichloroethane-44 48.5 ug/kg 50.0 97% 41 - 150 9 48 9053563 NSE1337-03 05/23/09 0438 Surrogare: 7.14 90 97% 57 - 148 9033563 NSE1337-03 05/23/09 0438 Surrogare: -Abrinome 80.1 1.25 mg/kg dry 1.71 73% 3.3 9052613 NSE1337-01 05/21/09 18:14 Acenaphthene ND 1.46 mg/kg dry 1.71 87% 31 - 13 6 38 9052613 NSE1331-01	Analyte	Orig. Val.	Duplicate	Q	Units	Spike Conc	% Rec.	Target Range	RPD	Limit	Batch	Sample Duplicated	Analyzed Date/Time
Sector Sector<	Selected Volatile Organic Comp	ounds by FPA	Method 87	50R								· .	
Bencene ND 40.5 ug/kg 50.0 813 31.4 10 43 903563 NEB137-03 052309 04.33 Ehtyltenzene ND 41.3 ug/kg 50.0 61.50 90.4 8905363 NEB137-03 052309 04.33 Toluene ND 39.2 ug/kg 50.0 76.0 50.1 50.0 05.35 NEB137-03 052309 04.33 Surrogate: JD/hithorechane-M ND 120 ug/kg 50.0 75.13 5 50.0 NEB137-03 052309 04.33 Surrogate: JD/hithorechane-M 94.4 ug/kg 50.0 97.5 51.30 5 903563 NEB137-03 052309 04.33 Surrogate: JD/hithorechane-M 94.4 ug/kg 50.0 97.5 51.30 5 905363 NEB137-03 052309 04.33 Surrogate: JD/hithorechane-M 94.4 ug/kg 97.0 97.43 51.30 51.30 51.30	• ·	ounus by El A	Method 02										
Ethylbenzene ND 41.3 ugkg 50.0 83% 16.160 9 48 903563 NSE137-03 05/23/09 04.38 Naphthalee ND 28.1 ugkg 50.0 56% 10.151 10 50 9053563 NSE1337-03 05/23/09 04.38 Toluene ND 39.2 ugkg 50.0 97% 41.150 9 48 9053563 NSE1337-03 05/23/09 04.38 Surrogate: 1.2.Dichlorochane-d4 48.5 ugkg 50.0 97% 51.19 9053563 NSE1337-03 05/23/09 04.38 Surrogate: 2.2.Dichlorochane-d4 48.4 ugkg 50.0 9053563 NSE1337-03 05/23/09 04.38 Surrogate: 4.8.1 ugkg 50.0 9053563 NSE1337-03 05/23/09 04.38 Surrogate: 4.8.1 ugkg 90.9 975 51.48 9055613 NSE1331-01 05/21/09 18.14 Acemaphthene ND		ND	40.5		ug/kg	50.0	81%	33 - 146	10	43	9053563	NSE1337-03	05/23/09 04:38
Np ND 28.1 ug/kg 50.9 56% 10 - 151 10 50 983563 NE1337-03 56/20/9 9433 Tolene ND 39.2 ug/kg 500 76% 61-151 11 44 9053563 NSE1337-03 56/20/9 9433 Xylenes, tolal ND 120 ug/kg 500 97% 41 - 159 9 48 9053563 NSE1337-03 56/20/9 9433 Surrogar: L32/bichloroethane-M 49.4 ug/kg 500 97% 41 - 150 9 48 9053563 NSE1337-03 56/20/9 9438 Surrogar: Lag/kg 500 97% 57 - 18 5 9053563 NSE137-03 56/20/9 164 Surrogar: Lag/kg 500 97% 57 - 18 5 98 95/213 NSE137-03 56/20/9 164 Accamphinene ND 1.47 mg/kg dry 171 87% 31 - 13 6 38 905/213<						50.0	83%						05/23/09 04:38
Tolene ND 39.2 ug/kg 50. 78% 30 - 15 11 44 9033563 NE1337-03 05/2009 04.38 Xjenes, tolal ND 120 ug/kg 500 97% 16 - 159 9 48 053563 NE1337-03 05/2009 04.38 Surrogate: 12.0 ug/kg 500 97% 57 - 168 5 9033563 NSE1337-03 05/2309 04.38 Surrogate: Tolknom/lucromethane 48.1 ug/kg 500 99% 57 - 148 5 9033563 NSE1337-03 05/2309 04.38 Surrogate: Tolknom/lucromethane 48.1 ug/kg 500 99% 58 - 150 5 9033563 NSE1337-03 05/2309 04.38 Surrogate: Hammoflucromethane ND 1.25 mg/kg dry 7.17 73% 28 - 117 3 3 9052613 NSE1337-01 05/2109 18.14 Accempthip/lenc ND 1.25 mg/kg dry 7.17 73% 28 - 117 3 3 9052613 NSE1331-01 05/2109	•					50.0							05/23/09 04:38
Xylenes, total ND 120 ug/kg 150 87 16-159 9 48 903556 NSE1337-30 05/209 04.38 Surreguie: 1,2-Dichlaroethane-d4 48.5 ug/kg 50.0 974 41-150 5 903556 NSE1337-30 05/209 04.38 Surreguie: 1,2-Dichlaroethane-d4 49.4 ug/kg 50.0 974 57-148 5 905356 NSE1337-30 05/209 04.38 Surreguie: 4-Bromofluorobenzene 48.1 ug/kg 50.0 974 57-148 5 905356 NSE1337-00 05/209 04.38 Surreguie: 4-Bromofluorobenzene 48.1 ug/kg 50.0 974 58-150 5 905356 NSE1337-00 05/2109 18.44 Accenaphthene ND 1.47 mg/kg dry 1.71 73 87 33 9052613 NSE1331-01 05/2109 18.44 Anthracen ND 1.46 mg/kg dry 1.71 876 31-131 3 2 905261 NSE1331-01 05/2109 18.44 Benzo (a) anthracen ND	-	ND	39.2			50.0	78%	30 - 145	11	44	9053563	NSE1337-03	05/23/09 04:38
Surrogate: 1.2.Dichloroethane-d4 48.5 ug/kg 50.0 97% 41.150 9035563 NSE1337.03 05/23/09 04.38 Surrogate: Ditromofluoromethane 51.0 ug/kg 50.0 970 57.148 9035563 NSE1337.03 05/23/09 04.38 Surrogate: Ditromofluoromethane 48.1 ug/kg 50.0 970 57.148 9035563 NSE1337.03 05/23/09 04.38 Surrogate: Attemptition 48.1 ug/kg 50.0 970 57.148 9035563 NSE1337.03 05/23/09 04.38 Polyaromatic Hydrocarbons by EPA 8270D Surrogate: - - - - - - 905561 NSE1331.01 05/21/09 18.14 Accmaphthylenc ND 1.47 mg/kg dry 1.71 87% 31.13 6 38 9052613 NSE1331.01 05/21/09 18.14 Benzo (a) mitnacne ND 1.54 mg/kg dry 1.71 87% 30-127 1 31 9052613 NSE1331.01 05/21/09 18.14 Benzo (a) flo	Xylenes, total	ND	120			150	80%	16 - 159	9	48	9053563	NSE1337-03	05/23/09 04:38
Barrogate: Toluend-d8 49.4 ugkg 50.0 99% 57 - 148 9053563 NSE1337-03 05/23/09 04.38 Surrogate: 48.1 ug/kg 50.0 96% 58 - 150 9053563 NSE1337-03 05/23/09 04.38 Polyaromatic Hydrocarbons by EPA 8270D Surrogate: 9052613 MSE1337-03 05/23/09 04.38 9052613-MSD1 Acenaphthone ND 1.47 mg/kg dry 1.71 73% 28 - 117 3 33 9052613 NSE1331-01 05/21/09 18:14 Acenaphthone ND 1.47 mg/kg dry 1.71 86% 31 - 131 3 32 9052613 NSE1331-01 05/21/09 18:14 Benzo (a) pyrene ND 1.56 mg/kg dry 1.71 90% 20 - 124 5 26 9052613 NSE1331-01 05/21/09 18:14 Benzo (b) flooranthene ND 1.56 mg/kg dry 1.71 90% 20 - 130 11 35 9052613 NSE1	Surrogate: 1,2-Dichloroethane-d4		48.5			50.0	97%	41 - 150			9053563	NSE1337-03	05/23/09 04:38
Surrogate: Tollane-d8 49,4 ug/kg 50.0 99,6 57-148 905353 NSE1337-03 05/20/9 04.38 Surrogate: 4-Brond/luorobenzene 48.1 ug/kg 50.0 96,6 58-150 905353 NSE1337-03 05/20/9 04.38 Polyaromatic Hydrocarbons by EPA 8270D Surrogate: 4-Brond/luorobenzene ND 1.25 mg/kg dry 1.71 73,6 28-117 3 33 9052613 NSE1331-00 05/21/9 18:14 Acenaphthene ND 1.47 mg/kg dry 1.71 856 31-13 6 38 9052613 NSE131-00 05/21/9 18:14 Anthracene ND 1.54 mg/kg dry 1.71 87% 30-127 1 31 9052613 NSE131-00 05/21/9 18:14 Benzo (a) prone ND 1.56 mg/kg dry 1.71 87% 30-127 1 31 9052613 NSE131-00 05/21/9 18:14 Benzo (b) flooranthene ND 1.55 mg/kg dry	Surrogate: Dibromofluoromethane		51.0		ug/kg	50.0	102%	55 - 139			9053563	NSE1337-03	05/23/09 04:38
Polyaromatic Hydrocarbons by EPA 8270D 9052613-MSD1 Accenaphthene ND 1.25 mg/kg dry 1.71 73% 28-117 3 33 9052613 NSE1331-01 05/21/99 18:14 Accenaphthylene ND 1.47 mg/kg dry 1.71 86% 33 - 113 6 38 9052613 NSE1331-01 05/21/99 18:14 Acenaphthylene ND 1.46 mg/kg dry 1.71 86% 33 - 113 3 32 9052613 NSE1331-01 05/21/99 18:14 Benzo (a) anthracene ND 1.56 mg/kg dry 1.71 87% 30 - 127 1 31 9052613 NSE1331-01 05/21/99 18:14 Benzo (a) pyrene ND 1.55 mg/kg dry 1.71 90% 20 - 128 9 37 9052613 NSE1331-01 05/21/99 18:14 Benzo (h) floranthene ND 1.55 mg/kg dry 1.71 89% 20 - 130 135 9052613 NSE1331-01 05/21/99 18:14 Chrysene ND 1.51 <td>Surrogate: Toluene-d8</td> <td></td> <td>49.4</td> <td></td> <td></td> <td>50.0</td> <td>99%</td> <td>57 - 148</td> <td></td> <td></td> <td>9053563</td> <td>NSE1337-03</td> <td>05/23/09 04:38</td>	Surrogate: Toluene-d8		49.4			50.0	99%	57 - 148			9053563	NSE1337-03	05/23/09 04:38
9052613-MSD1 Acenaphthene ND 1.25 mg/kg dry 1.71 73% 28 - 117 3 33 9052613 NSE1331-01 05/21/09 18:14 Acenaphthylene ND 1.47 mg/kg dry 1.71 86% 33 - 113 6 38 9052613 NSE1331-01 05/21/09 18:14 Anthracene ND 1.46 mg/kg dry 1.71 86% 31 - 131 3 32 9052613 NSE1331-01 05/21/09 18:14 Benzo (a) anthracene ND 1.50 mg/kg dry 1.71 90% 29 - 124 5 26 9052613 NSE1331-01 05/21/09 18:14 Benzo (a) pyrene ND 1.55 mg/kg dry 1.71 90% 21 - 122 3 28 9052613 NSE1331-01 05/21/09 18:14 Benzo (k) fluoranthene ND 1.55 mg/kg dry 1.71 89% 20 - 130 11 35 9052613 NSE1331-01 05/21/09 18:14	Surrogate: 4-Bromofluorobenzene		48.1		ug/kg	50.0	96%	58 - 150			9053563	NSE1337-03	05/23/09 04:38
Acenaphthene ND 1.25 mg/kg dry 1.71 73% 28 - 117 3 33 9052613 NSE1331-01 05/21/09 18:14 Acenaphthylene ND 1.47 mg/kg dry 1.71 86% 33 - 113 6 38 9052613 NSE1331-01 05/21/09 18:14 Anthracene ND 1.46 mg/kg dry 1.71 85% 31 - 131 3 32 9052613 NSE1331-01 05/21/09 18:14 Benzo (a) anthracene ND 1.54 mg/kg dry 1.71 97% 20 - 124 5 26 9052613 NSE1331-01 05/21/09 18:14 Benzo (b) fluoranthene ND 1.55 mg/kg dry 1.71 97% 20 - 124 5 28 9052613 NSE1331-01 05/21/09 18:14 Benzo (k) fluoranthene ND 1.55 mg/kg dry 1.71 87% 30 - 119 5 31 9052613 NSE1331-01 05/21/09 18:14 Chrysene ND 1.51 mg/kg dry 1.71 88% 30 - 119 5 31	Polyaromatic Hydrocarbons by	EPA 8270D											
Acenaphthene ND 1.25 mg/kg dry 1.71 73% 28 - 117 3 33 9052613 NSE1331-01 05/21/09 18:14 Acenaphthylene ND 1.47 mg/kg dry 1.71 86% 33 - 113 6 38 9052613 NSE1331-01 05/21/09 18:14 Anthracene ND 1.46 mg/kg dry 1.71 85% 31 - 131 3 32 9052613 NSE1331-01 05/21/09 18:14 Benzo (a) anthracene ND 1.54 mg/kg dry 1.71 97% 20 - 124 5 26 9052613 NSE1331-01 05/21/09 18:14 Benzo (b) fluoranthene ND 1.55 mg/kg dry 1.71 97% 20 - 124 5 28 9052613 NSE1331-01 05/21/09 18:14 Benzo (k) fluoranthene ND 1.55 mg/kg dry 1.71 87% 30 - 119 5 31 9052613 NSE1331-01 05/21/09 18:14 Chrysene ND 1.51 mg/kg dry 1.71 88% 30 - 119 5 31	9052613-MSD1												
AnthraceneND1.46mg/kg dry mg/kg dry1.7185%31 - 1313329052613NSE1331-0105/21/0918:14Benzo (a) anthraceneND1.54mg/kg dry1.7190%29 - 1245269052613NSE1331-0105/21/0918:14Benzo (a) pyreneND1.50mg/kg dry1.7187%30 - 1271319052613NSE1331-0105/21/0918:14Benzo (a), h) pyreneND1.56mg/kg dry1.7190%21 - 1223289052613NSE1331-0105/21/0918:14Benzo (a), h) pyreneND1.53mg/kg dry1.7189%20 - 13011359052613NSE1331-0105/21/0918:14Benzo (k) fluorantheneND1.51mg/kg dry1.7188%30 - 1195319052613NSE1331-0105/21/0918:14Dibenz (a,h) anthraceneND1.51mg/kg dry1.7188%30 - 1195319052613NSE1331-0105/21/0918:14FluorantheneND1.63mg/kg dry1.7188%30 - 1195319052613NSE1331-0105/21/0918:14FluorantheneND1.63mg/kg dry1.7188%30 - 1195319052613NSE1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7188%38 - 1101359052613NSE13		ND	1.25		mg/kg dry	1.71	73%	28 - 117	3	33	9052613	NSE1331-01	05/21/09 18:14
Benzo (a) anthraceneND1.54mg/kg dry1.7190%29 - 1245269052613NSE 1331-0105/21/0918:14Benzo (a) pyreneND1.50mg/kg dry1.7187%30 - 1271319052613NSE 1331-0105/21/0918:14Benzo (b) fluorantheneND1.56mg/kg dry1.7191%26 - 1289379052613NSE 1331-0105/21/0918:14Benzo (g,h,i) peryleneND1.55mg/kg dry1.7190%21 - 1223289052613NSE 1331-0105/21/0918:14Benzo (k) fluorantheneND1.51mg/kg dry1.7189%20 - 13011359052613NSE 1331-0105/21/0918:14Dibenz (a,h) anthraceneND1.51mg/kg dry1.7188%30 - 1195319052613NSE 1331-0105/21/0918:14FluorantheneND1.51mg/kg dry1.7188%30 - 1195319052613NSE 1331-0105/21/0918:14FluorantheneND1.51mg/kg dry1.7188%38 - 1101359052613NSE 1331-0105/21/0918:14FluorantheneND1.54mg/kg dry1.7188%38 - 1101359052613NSE 1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7188%38 - 1101359052613NSE	Acenaphthylene	ND	1.47		mg/kg dry	1.71	86%	33 - 113	6	38	9052613	NSE1331-01	05/21/09 18:14
Benzo (a) pyreneND1.50mg/kg dry1.7187%30 - 1271319052613NSE 1331-0105/21/0918:14Benzo (a) huorantheneND1.56mg/kg dry1.7191%26 - 1289379052613NSE 1331-0105/21/0918:14Benzo (a), h) peryleneND1.55mg/kg dry1.7190%21 - 1223289052613NSE 1331-0105/21/0918:14Benzo (a), hi peryleneND1.53mg/kg dry1.7189%20 - 13011359052613NSE 1331-0105/21/0918:14Benzo (a) hunaratheneND1.51mg/kg dry1.7188%30 - 1195319052613NSE 1331-0105/21/0918:14Dibenz (a, h) anthraceneND1.51mg/kg dry1.7188%30 - 1195319052613NSE 1331-0105/21/0918:14FluorantheneND1.63mg/kg dry1.7188%38 - 1101359052613NSE 1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7180%21 - 1202289052613NSE 1331-0105/21/0918:14NpreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE 1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE 1331-01 <td>Anthracene</td> <td>ND</td> <td>1.46</td> <td></td> <td>mg/kg dry</td> <td>1.71</td> <td>85%</td> <td>31 - 131</td> <td>3</td> <td>32</td> <td>9052613</td> <td>NSE1331-01</td> <td>05/21/09 18:14</td>	Anthracene	ND	1.46		mg/kg dry	1.71	85%	31 - 131	3	32	9052613	NSE1331-01	05/21/09 18:14
Benzo (b) fluorantheneND1.56mg/kg dry1.7191%26 - 1289379052613NSE1331-0105/21/0918:14Benzo (b) fluorantheneND1.55mg/kg dry1.7190%21 - 1223289052613NSE1331-0105/21/0918:14Benzo (k) fluorantheneND1.53mg/kg dry1.7189%20 - 13011359052613NSE1331-0105/21/0918:14ChryseneND1.51mg/kg dry1.7188%30 - 1195319052613NSE1331-0105/21/0918:14Dibenz (a,h) anthraceneND1.51mg/kg dry1.7188%30 - 1195319052613NSE1331-0105/21/0918:14FluorantheneND1.63mg/kg dry1.7188%38 - 1101359052613NSE1331-0105/21/0918:14FluoreneND1.51mg/kg dry1.7188%38 - 1101359052613NSE1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14 <td>Benzo (a) anthracene</td> <td>ND</td> <td>1.54</td> <td></td> <td>mg/kg dry</td> <td>1.71</td> <td>90%</td> <td>29 - 124</td> <td>5</td> <td>26</td> <td>9052613</td> <td>NSE1331-01</td> <td>05/21/09 18:14</td>	Benzo (a) anthracene	ND	1.54		mg/kg dry	1.71	90%	29 - 124	5	26	9052613	NSE1331-01	05/21/09 18:14
Benzo (g,h.i) peryleneND1.55mg/kg dry1.7190%21 - 1223289052613NSE1331-0105/21/0918:14Benzo (k) fluorantheneND1.53mg/kg dry1.7189%20 - 13011359052613NSE1331-0105/21/0918:14ChryseneND1.51mg/kg dry1.7188%30 - 1195319052613NSE1331-0105/21/0918:14Diberz (a,h) anthraceneND1.51mg/kg dry1.7188%27 - 1224329052613NSE1331-0105/21/0918:14FluorantheneND1.63mg/kg dry1.7195%23 - 1328369052613NSE1331-0105/21/0918:14FluoreneND1.51mg/kg dry1.7195%23 - 1328369052613NSE1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7188%38 - 1101359052613NSE1331-0105/21/0918:14Naphthalene0.04351.41mg/kg dry1.7180%21 - 1203339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14<	Benzo (a) pyrene	ND	1.50		mg/kg dry	1.71	87%	30 - 127	1	31	9052613	NSE1331-01	05/21/09 18:14
Benzo (k) fluorantheneND1.53mg/kg dry1.7189%20 - 13011359052613NSE1331-0105/21/0918:14ChryseneND1.51mg/kg dry1.7188%30 - 1195319052613NSE1331-0105/21/0918:14Dibenz (a,h) anthraceneND1.51mg/kg dry1.7188%27 - 1224329052613NSE1331-0105/21/0918:14FluorantheneND1.63mg/kg dry1.7195%23 - 1328369052613NSE1331-0105/21/0918:14FluoreneND1.51mg/kg dry1.7188%38 - 1101359052613NSE1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7188%38 - 1101359052613NSE1331-0105/21/0918:14NaphthaleneND1.54mg/kg dry1.7184%14 - 1171349052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14Pyrene <t< td=""><td>Benzo (b) fluoranthene</td><td>ND</td><td>1.56</td><td></td><td>mg/kg dry</td><td>1.71</td><td>91%</td><td>26 - 128</td><td>9</td><td>37</td><td>9052613</td><td>NSE1331-01</td><td>05/21/09 18:14</td></t<>	Benzo (b) fluoranthene	ND	1.56		mg/kg dry	1.71	91%	26 - 128	9	37	9052613	NSE1331-01	05/21/09 18:14
ChryseneND1.51mg/kg dry1.7188%30 - 1195319052613NSE1331-0105/21/0918:14Dibenz (a,h) anthraceneND1.51mg/kg dry1.7188%27 - 1224329052613NSE1331-0105/21/0918:14FluorantheneND1.63mg/kg dry1.7195%23 - 1328369052613NSE1331-0105/21/0918:14FluoreneND1.51mg/kg dry1.7188%38 - 1101359052613NSE1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7190%24 - 1222289052613NSE1331-0105/21/0918:14NaphthaleneND1.44mg/kg dry1.7184%14 - 1171349052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:141-MethylnaphthaleneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:142-MethylnaphthaleneND1.54mg/kg dry1.7176%10 - 1215349052613NSE1331-0105/21/0918:142-Me	Benzo (g,h,i) perylene	ND	1.55		mg/kg dry	1.71	90%	21 - 122	3	28	9052613	NSE1331-01	05/21/09 18:14
Dibers (a,h) anthraceneND1.51mg/kg dry1.7188%27 - 1224329052613NSE1331-0105/21/0918:14FluorantheneND1.63mg/kg dry1.7195%23 - 1328369052613NSE1331-0105/21/0918:14FluoreneND1.51mg/kg dry1.7188%38 - 1101359052613NSE1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7190%24 - 1222289052613NSE1331-0105/21/0918:14NaphthaleneND1.44mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:141-MethylnaphthaleneND1.54mg/kg dry1.7180%26 - 1163339052613NSE1331-0105/21/0918:142-MethylnaphthaleneND1.31mg/kg dry1.7186%26 - 1163339052613NSE1331-0105/21/0918:14Surrog	Benzo (k) fluoranthene	ND	1.53		mg/kg dry	1.71	89%	20 - 130	11	35	9052613	NSE1331-01	05/21/09 18:14
FluorantheneND1.63mg/kg dry1.7195%23 - 1328369052613NSE1331-0105/21/0918:14FluoreneND1.51mg/kg dry1.7188%38 - 1101359052613NSE1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7190%24 - 1222289052613NSE1331-0105/21/0918:14NaphthaleneND1.44mg/kg dry1.7184%14 - 1171349052613NSE1331-0105/21/0918:14Phenanthrene0.04351.41mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%26 - 1163339052613NSE1331-0105/21/0918:14PyreneND1.31mg/kg dry1.7186%26 - 1163339052613NSE1331-0105/21/0918:14PyreneND1.47mg/kg dry1.7186%26 - 1163339052613NSE1331-0105/21/0918:14PyreneND1.47	Chrysene	ND	1.51		mg/kg dry	1.71	88%	30 - 119	5	31	9052613	NSE1331-01	05/21/09 18:14
FluoreneND1.51mg/kg dry1.7188%38 - 1101359052613NSE1331-0105/21/0918:14Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7190%24 - 1222289052613NSE1331-0105/21/0918:14NaphthaleneND1.44mg/kg dry1.7184%14 - 1171349052613NSE1331-0105/21/0918:14Phenanthrene0.04351.41mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7180%24 - 1338369052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7190%24 - 1338369052613NSE1331-0105/21/0918:141-MethylnaphthaleneND1.31mg/kg dry1.7176%10 - 1215349052613NSE1331-0105/21/0918:142-MethylnaphthaleneND1.47mg/kg dry1.7186%26 - 1163339052613NSE1331-0105/21/0918:14Surrogate: Terphenyl-d141.57mg/kg dry1.7180%19 - 1099052613NSE1331-0105/21/0918:14Surrogate: 2-Fluorobiphenyl1.36mg/kg dry1.7180%19 - 1099052613NSE1331-0105/21/0918:14	Dibenz (a,h) anthracene	ND	1.51		mg/kg dry	1.71	88%	27 - 122	4	32	9052613	NSE1331-01	05/21/09 18:14
Indeno (1,2,3-cd) pyreneND1.54mg/kg dry1.7190%24 - 1222289052613NSE1331-0105/21/0918:14NaphthaleneND1.44mg/kg dry1.7184%14 - 1171349052613NSE1331-0105/21/0918:14Phenanthrene0.04351.41mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7190%24 - 1338369052613NSE1331-0105/21/0918:141-MethylnaphthaleneND1.31mg/kg dry1.7176%10 - 1215349052613NSE1331-0105/21/0918:142-MethylnaphthaleneND1.47mg/kg dry1.7186%26 - 1163339052613NSE1331-0105/21/0918:14Surrogate: Terphenyl-d141.57mg/kg dry1.7192%26 - 1289052613NSE1331-0105/21/0918:14Surrogate: 2-Fluorobiphenyl1.36mg/kg dry1.7180%19 - 1099052613NSE1331-0105/21/0918:14	Fluoranthene	ND	1.63		mg/kg dry	1.71	95%	23 - 132	8	36	9052613	NSE1331-01	05/21/09 18:14
NaphthaleneND1.44mg/kg dry1.7184%14 - 1171349052613NSE1331-0105/21/0918:14Phenanthrene0.04351.41mg/kg dry1.7180%21 - 1303339052613NSE1331-0105/21/0918:14PyreneND1.54mg/kg dry1.7190%24 - 1338369052613NSE1331-0105/21/0918:141-MethylnaphthaleneND1.31mg/kg dry1.7176%10 - 1215349052613NSE1331-0105/21/0918:142-MethylnaphthaleneND1.47mg/kg dry1.7186%26 - 1163339052613NSE1331-0105/21/0918:14Surrogate: Terphenyl-d141.57mg/kg dry1.7192%26 - 1289052613NSE1331-0105/21/0918:14Surrogate: 2-Fluorobiphenyl1.36mg/kg dry1.7180%19 - 1099052613NSE1331-0105/21/0918:14	Fluorene	ND	1.51		mg/kg dry	1.71	88%	38 - 110	1	35	9052613	NSE1331-01	05/21/09 18:14
Phenanthrene 0.0435 1.41 mg/kg dry 1.71 80% 21 - 130 3 33 9052613 NSE1331-01 05/21/09 18:14 Pyrene ND 1.54 mg/kg dry 1.71 90% 24 - 133 8 36 9052613 NSE1331-01 05/21/09 18:14 1-Methylnaphthalene ND 1.31 mg/kg dry 1.71 76% 10 - 121 5 34 9052613 NSE1331-01 05/21/09 18:14 2-Methylnaphthalene ND 1.47 mg/kg dry 1.71 76% 10 - 121 5 34 9052613 NSE1331-01 05/21/09 18:14 Surrogate: Terphenyl-d14 1.57 mg/kg dry 1.71 86% 26 - 128 9052613 NSE1331-01 05/21/09 18:14 Surrogate: 2-Fluorobiphenyl 1.36 mg/kg dry 1.71 80% 19 - 109 9052613 NSE1331-01 05/21/09 18:14 1.47 mg/kg dry 1.71 80% 19 - 109 9052613 NSE1331-01 05/21/09 18:14 1.814 1.36 mg/kg dr	Indeno (1,2,3-cd) pyrene	ND	1.54		mg/kg dry	1.71	90%	24 - 122	2	28	9052613	NSE1331-01	05/21/09 18:14
Pyrene ND 1.54 mg/kg dry 1.71 90% 24 - 133 8 36 9052613 NSE1331-01 05/21/09 18:14 1-Methylnaphthalene ND 1.31 mg/kg dry 1.71 76% 10 - 121 5 34 9052613 NSE1331-01 05/21/09 18:14 2-Methylnaphthalene ND 1.47 mg/kg dry 1.71 86% 26 - 116 3 33 9052613 NSE1331-01 05/21/09 18:14 Surrogate: Terphenyl-d14 1.57 mg/kg dry 1.71 92% 26 - 128 9052613 NSE1331-01 05/21/09 18:14 Surrogate: 2-Fluorobiphenyl 1.36 mg/kg dry 1.71 80% 19 - 109 9052613 NSE1331-01 05/21/09 18:14	Naphthalene	ND	1.44		mg/kg dry	1.71	84%	14 - 117	1	34	9052613	NSE1331-01	05/21/09 18:14
1-Methylnaphthalene ND 1.31 mg/kg dry 1.71 76% 10 - 121 5 34 9052613 NSE1331-01 05/21/09 18:14 2-Methylnaphthalene ND 1.47 mg/kg dry 1.71 86% 26 - 116 3 33 9052613 NSE1331-01 05/21/09 18:14 Surrogate: Terphenyl-d14 1.57 mg/kg dry 1.71 92% 26 - 128 9052613 NSE1331-01 05/21/09 18:14 Surrogate: 2-Fluorobiphenyl 1.36 mg/kg dry 1.71 80% 19 - 109 9052613 NSE1331-01 05/21/09 18:14	Phenanthrene	0.0435	1.41		mg/kg dry	1.71	80%	21 - 130	3	33	9052613	NSE1331-01	05/21/09 18:14
2-Methylnaphthalene ND 1.47 mg/kg dry 1.71 86% 26 - 116 3 33 9052613 NSE1331-01 05/21/09 18:14 Surrogate: Terphenyl-d14 1.57 mg/kg dry 1.71 92% 26 - 128 9052613 NSE1331-01 05/21/09 18:14 Surrogate: 2-Fluorobiphenyl 1.36 mg/kg dry 1.71 80% 19 - 109 9052613 NSE1331-01 05/21/09 18:14	Pyrene	ND	1.54		mg/kg dry	1.71	90%	24 - 133	8	36	9052613	NSE1331-01	05/21/09 18:14
Surrogate: Terphenyl-d14 1.57 mg/kg dry 1.71 92% 26 - 128 9052613 NSE1331-01 05/21/09 18:14 Surrogate: 2-Fluorobiphenyl 1.36 mg/kg dry 1.71 80% 19 - 109 9052613 NSE1331-01 05/21/09 18:14	1-Methylnaphthalene	ND	1.31		mg/kg dry	1.71	76%	10 - 121	5	34	9052613	NSE1331-01	05/21/09 18:14
Surrogate: 2-Fluorobiphenyl 1.36 mg/kg dry 1.71 80% 19 - 109 9052613 NSE1331-01 05/21/09 18:14	2-Methylnaphthalene	ND	1.47		mg/kg dry	1.71	86%	26 - 116	3	33	9052613	NSE1331-01	05/21/09 18:14
	Surrogate: Terphenyl-d14		1.57		mg/kg dry	1.71	92%	26 - 128			9052613	NSE1331-01	05/21/09 18:14
Surrogate: Nitrobenzene-d5 1.42 mg/kg dry 1.71 83% 22 - 104 9052613 NSE1331-01 05/21/09 18:14	Surrogate: 2-Fluorobiphenyl		1.36		mg/kg dry	1.71	80%	19 - 109			9052613	NSE1331-01	05/21/09 18:14
	Surrogate: Nitrobenzene-d5		1.42		mg/kg dry	1.71	83%	22 - 104			9052613	NSE1331-01	05/21/09 18:14

THE LEADER IN ENVIRONMENTAL TESTING

Client	Small Business Group, Inc. (2449)	Work Order:	NSE1331
	10179 Highway 78	Project Name:	Laurel Bay Housing Project
	Ladson, SC 29456	Project Number:	[none]
Atm	Tom McElwee	Received:	05/15/09 08:15

TestAmerica Nashville

CERTIFICATION SUMMARY

Method	Matrix	AIHA	Nelac	South Carolina
SW846 8260B	Soil	N/A	х	Х
SW846 8270D	Soil			Х
SW-846	Soil			

THE LEADER IN ENVIRONMENTAL TESTING

Client	Small Business Group, Inc. (2449)
	10179 Highway 78
	Ladson, SC 29456
Attn	Tom McElwee

Work Order:NSE1331Project Name:Laurel Bay Housing ProjectProject Number:[none]Received:05/15/09 08:15

DATA QUALIFIERS AND DEFINITIONS

ND

Not detected at the reporting limit (or method detection limit if shown)

METHOD MODIFICATION NOTES

NSE1331 06/01/09 23 59																														
Test-mer		Nashville 2960 Fost Nashville,	er Crei	ighton					hone Free Fax		0-76	5-09	80							met	essist u hods, i ulatory	is this	s work	, being		-				
Client Name/Account #:	EEG # 2449															-							C	ompili	ance M	lonito	ring?		Yes	No
Address:	10179 Highway	78		<u> </u>	· • • • • • • • • • • • • • • • • • • •																		•	Enfor	cemen	t Actio	m?		Yes	No
City/State/Zip:	Ledson, SC 294	56													-			Site	State	: <u>SC</u>			- 7							
Project Manager:	Tom McElwee	mail: mcelw		ginc.ne	ot										77	-,			PO#	:		8	20	1						
Telephone Number:	843.412.2097					Fax	No.:		14-	3 -	- 8	<u>7</u>	<u>1-</u>	04	10	-		TAQ	uote #	:										
Sampler Name: (Print)	PRA	+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	<u>ih A</u>	n l												-		Pro	ject ID	: Lau	rel Bay	Hou	ising l	Projec	<u>*</u>					
Sempler Signature:	4	PN-	-										_			_		Pro	oject #	:				_						
		1					Ċ	Pn	serve	ative		\mathbf{Z}		Ņ	latrio	(_						An	alyze	For:					7
			ers Shipped				-NeSQ		abel) Ann I at al	ilow Label)	(Rj	Mallar						oth - 82601												-Bchedule
Sample ID / Description	Date Samp	Time Samp	No. of Conts	Grath	Composite	Field Fiftered	_		NaOH (Orang H SO. Plantic	H ₂ SO, Glassin	None (Black L	Other (Specify	Groundwater	Wastewater Drinking Water	Shidoe	Sol	Other (specify)	BTEX + N	PAH - 8270											RUSH TAT (P
1005 Foxslour	5/11/09	1320	5	X			2				2				L			3	13				\square							
1008 Foxclour	5/12/09	1010	5	X			2				2							3	2				2							
1009 Foxglour	5/12/09	1340	5	X			h				2							3	2			-	う							
1014 FOXLOUR	5713/09	1015	5	X			2				2							2	2				é							
1013 Fox LOUR	5/13/09	1440	5	X			2				2	h						3	12				5	_						
1017 Forglove	5/14/09	1910	5	入	-+	+	2			+-	2	1	-+	-+-	╇	+	-	3	2	+	+	-	Ø			-		-+		
						\uparrow	+	H	+	+-		11		+	\uparrow	\top	\square		1	+	1-	-†-	+		†	+	+			-1-
		1			1				-+-	+		†~-	~=	-	╪╌	+	Ħ		1		+-				1	+	+	-+	-	
	+	1	†		-+		\uparrow	\vdash	-	+					+	\uparrow	Н		1			+	-			1-	-		-	+
Special Instructions:		·····					etho	1i	Shipn	nent:	. i	ةة 						_		Lat		npen	ature I	Upon	Receip	pt: ?	3.	7	-	Y
Relinquished by	5/14/	09	1			red by:	la	X							Date			Tim												
Relinquished by:	Dat	8	Tir	me	Receiv	/ed b	estAr	meric						5/1	Date 5	09	8	тіл 7/2				******								

ATTACHMENT A

UST Certificate of Disposal

CONTRACTOR

Small Business Group, Inc. 10179 Highway 78 Ladson, SC 29456

TEL (843) 879-0403 FAX (843) 879-0401

TANK ID & LOCATION

UST 1013Foxglove, 1013 Foxglove St., Laurel Bay Housing Area, MCAS Beaufort, S.C.

DISPOSAL LOCATION

Coastal Auto Salvage Co., Inc. 130 Laurel Bay Road Beaufort, S.C. 29906

TYPE OF TANKSIZE (GAL)

Steel 280

CLEANING/DISPOSAL METHOD

The tank and piping were unearthed, cut open, cleaned with a pressure washer, cut into sections, and recycled.

DISPOSAL CERTIFICATION

I certify that the above tank, piping and equipment has been properly cleaned and disposed of.

1. C. Shee, 6/4/09 (Name)

2006 Assessm Guide	nt 2001 RBCA (Table B-2) sand RBSL	DEC 2009 protection GW SSL	1013 Foxglove St 1014 Foxglove St 1017 Foxglove											
Compound RL (mg/kg	(mg/kg)	(mg/kg)	Result			RL DF	Result	RL	DF					
(B) - Benzene 0.005	0.007	0.0026	ND	0.00198 1	ND	0.00216 1	ND	0.00269	1					
(T) - Toluene 0.005	1.45	0.69	ND	0.00198 1	ND	0.00216 1	ND	0.00269	1					
(E) - Ethylbenzene 0.005	1.15	0.78	ND	0.00198 1	ND	0.00216 1	ND	0.00269	1					
(X) - Xylenes 0.005	14.5	9.8	ND	0.00496 1	ND	0.00539 1	ND	0.00672	1					
m (N) - Napthalene (mthd 8260) 0.005	0.036	0.00047 *	ND	0.00496 1	ND	0.00539 1	ND	0.00672	1					
B(a) - Benzo(a)anthracene 0.66	0.066	0.01 *	ND	0.0694 1	ND	0.0703 1	ND	0.0769	1					
B(b) - Benzo(b)flouranthene 0.66	0.066	.035 *	ND	0.0694 1	ND	0.0703 1	ND	0.0769	1					
B(k) - Benzo(k)flouranthene 0.66	0.066	.35 *	ND	0.0694 1	ND	0.0703 1	ND	0.0769	1					
H H H H H H H H H H H H H H H H H H H	0.066	1.1 *	ND	0.0694 1	ND	0.0703 1	ND	0.0769	1					
DiB(a,h) - Dibenz(a,h)anthracene 0.66	0.066	.011 *	ND	0.0694 1	ND	0.0703 1	ND	0.0769	1					
* risk based SSL for pro	ection of GW		8	BTEX ok		BTEX ok		X, N R exceed	ds					
			RL check	PAH ok	RL check	PAH ok	RL check	PAH o	<u>k</u>					
			RBCA	BTEX ok PAH marginally	RBCA	BTEX ok PAHs	RBCA	BTEX ok						
			check	exceeds	check	exceeds	check	PAH exce	eeds					
				N RL exceeds		N RL exceeds		N RL exc	eeds					
			SSL check	B(a), B(b), DiB(a,h) RL exceeds NFA b/c	SSL check	B(a), B(b), DiB(a,h) RL exceeds	SSL check	B(a), B(DiB(a,h) exceed	RL					
			Conclusion	there are marginal exceedances of RLs but al results are ND and N meets RBCA		NFA b/c there are marginal exceedances of RLs but all results are ND and N meets RBCA		NFA b/c f are marg exceedal of RLs bi results ar and N m RBC/	ginal nces ut all e ND eets					

Appendix C Regulatory Correspondence

C.Earl Hunter, Commissioner Promoting and protecting the health of the public and the environment.

Bureau of Land and Waste Management Division of Waste Management

February 17, 2010

Commanding Officer Attention: NREAO Mr. William A. Drawdy United States Marine Corp Air Station Post Office Box 55001 Beaufort, SC 29904-5001

RE:

No Further Action

Laurel Bay Underground Storage Tank Assessment Report for:

- 1013 Foxglove St.
- 1014 Foxglove St.
- 1017 Foxglove St.

Dear Mr. Drawdy,

The South Carolina Department of Health and Environmental Control (the Department) received the above referenced Underground Storage Tanks (USTs) Assessment Report on September 23, 2009 for the addresses listed above.

The Department has reviewed the referenced assessment report and agrees there is no indication of soil or groundwater contamination on this property, and therefore no further investigation is required at this time.

Please note that the Department's decision is based on information provided by the Marine Corp Air Station (MCAS) to date. Any information found to be contradictory to this decision may require additional action. Furthermore, the Department retains the right to request further investigation if deemed necessary.

If you have any questions, please contact me at picketcn@dhec.sc.gov or 803-896-4131.

Sincerely, Clust Picket

Christi Pickett Corrective Action Engineering Section Bureau of Land and Waste Management South Carolina Department of Health and Environmental Control

cc: Laurel Rhoten (via email) Craig Ehde (via email)